7,390 research outputs found
A Systematic Review of the Health Impacts of Mass Earth Movements (Landslides)
Background. Mass ground movements (commonly referred to as ‘landslides’) are common natural hazards that can have significant economic, social and health impacts. They occur as single events, or as clusters, and are often part of ‘disaster’ chains, occurring secondary to, or acting as the precursor of other disaster events. Whilst there is a large body of literature on the engineering and geological aspects of landslides, the mortality and morbidity caused by landslides is less well documented. As far as we are aware, this is the first systematic review to examine the health impacts of landslides. Methods. The MEDLINE, EMBASE, CINAHL, SCOPUS databases and the Cochrane library were systematically searched to identify articles which considered the health impacts of landslides. Case studies, case series, primary research and systematic reviews were included. News reports, editorials and non-systematic reviews were excluded. Only articles in English were considered. The references of retrieved papers were searched to identify additional articles. Findings. 913 abstracts were reviewed and 143 full text articles selected for review. A total of 27 papers reporting research studies were included in the review (25 from initial search, 1 from review of references and 1 from personal correspondence). We found a limited number of studies on the physical health consequences of landslides. Only one study provided detail of the causes of mortality and morbidity in relation a landslide event. Landslides cause significant mental health impacts, in particular the prevalence of PTSD may be higher after landslides than other types of disaster, though these studies tend to be older with only 3 papers published in the last 5 years, with 2 being published 20 years ago, and diagnostic criteria have changed since they were produced. Discussion. We were disappointed at the small number of relevant studies, and the generally poor documentation of the health impacts of landslides. Mental health impacts were better documented, though some of the studies are now quite old. Further research on the health impacts of landslides needs to be undertaken to support those responding to landslide disasters and to aid disaster risk mitigation advocacy
Entropy Balance and Dispersive Oscillations in Lattice Boltzmann Models
We conduct an investigation into the dispersive post-shock oscillations in
the entropic lattice-Boltzmann method (ELBM). To this end we use a root finding
algorithm to implement the ELBM which displays fast cubic convergence and
guaranties the proper sign of dissipation. The resulting simulation on the
one-dimensional shock tube shows no benefit in terms of regularization from
using the ELBM over the standard LBGK method. We also conduct an experiment
investigating of the LBGK method using median filtering at a single point per
time step. Here we observe that significant regularization can be achieved.Comment: 18 pages, 4 figures; 13/07/2009 Matlab code added to appendi
Structural Macroeconometrics
Methodologies for analyzing the forces that move and shape national economies have advanced markedly in the last thirty years, enabling economists as never before to unite theoretical and empirical research and align measurement with theory. In Structural Macroeconometrics , David DeJong and Chetan Dave provide the unified overview and in-depth treatment analysts need to apply these latest theoretical models and empirical techniques. The authors' emphasis throughout is on time series econometrics. DeJong and Dave detail methods available for solving dynamic structural models and casting solutions in the form of statistical models with empirical implications that may be analyzed either analytically or numerically. They present the full range of methodologies for characterizing and evaluating these empirical implications, including calibration exercises, method-of-moment procedures, and likelihood-based procedures, both classical and Bayesian. The book is complete with a rich array of implementation algorithms, sample empirical applications, and supporting computer code. Structural Macroeconometrics is tailored specifically to equip readers with a set of practical tools that can be used to expedite their entry into the field. DeJong and Dave's uniquely accessible, how-to approach makes this the ideal textbook for graduate students seeking an introduction to macroeconomics and econometrics and for advanced students pursuing applied research in macroeconomics. The book's historical perspective, along with its broad presentation of alternative methodologies, makes it an indispensable resource for academics and professionals.methodologies, research, measurement, theory, analysis, models, empirical, technique, statistical, computer, numerical
Numerical calibration of the stable poisson loaded specimen
An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials
The growth of galaxies in cosmological simulations of structure formation
We use hydrodynamic simulations to examine how the baryonic components of
galaxies are assembled, focusing on the relative importance of mergers and
smooth accretion in the formation of ~L_* systems. In our primary simulation,
which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark
matter universe, the space density of objects at our (64-particle) baryon mass
resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed
galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by
accretion rather than by mergers. At the redshift of peak mass growth, z~2,
accretion dominates over merging by about 4:1. The mean accretion rate per
galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the
merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is
about 2:1. We cannot distinguish truly smooth accretion from merging with
objects below our mass resolution threshold, but extrapolating our measured
mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that
sub-resolution mergers would add relatively little mass. The global star
formation history in these simulations tracks the mass accretion rate rather
than the merger rate. At low redshift, destruction of galaxies by mergers is
approximately balanced by the growth of new systems, so the comoving space
density of resolved galaxies stays nearly constant despite significant mass
evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1
agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift
surveys.Comment: Submitted to ApJ, 35 pp including 15 fig
Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice
BACKGROUND: The pathology of Alzheimer's disease (AD) is comprised of extracellular amyloid plaques, intracellular tau tangles, dystrophic neurites and neurodegeneration. The mechanisms by which these various pathological features arise are under intense investigation. Here, expanding upon pilot gene expression studies, we have further analyzed the relationship between Na+/K+ ATPase and amyloid using APP+PS1 transgenic mice, a model that develops amyloid plaques and memory deficits in the absence of tangle formation and neuronal or synaptic loss. RESULTS: We report that in addition to decreased mRNA expression, there was decreased overall Na+/K+ ATPase enzyme activity in the amyloid-containing hippocampi of the APP+PS1 mice (although not in the amyloid-free cerebellum). In addition, dual immunolabeling revealed an absence of Na+/K+ ATPase staining in a zone surrounding congophilic plaques that was occupied by dystrophic neurites. We also demonstrate that cerebral Na+/K+ ATPase activity can be directly inhibited by high concentrations of soluble Aβ. CONCLUSIONS: The data suggest that the reductions in Na+/K+ ATPase activity in Alzheimer tissue may not be purely secondary to neuronal loss, but may results from direct effects of amyloid on this enzyme. This disruption of ion homeostasis and osmotic balance may interfere with normal electrotonic properties of dendrites, blocking intraneuronal signal processing, and contribute to neuritic dystrophia. These results suggest that therapies aimed at enhancing Na+/K+ ATPase activity in AD may improve symptoms and/or delay disease progression
Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage
BACKGROUND: Anti-Aβ immunotherapy in transgenic mice reduces both diffuse and compact amyloid deposits, improves memory function and clears early-stage phospho-tau aggregates. As most Alzheimer disease cases occur well past midlife, the current study examined adoptive transfer of anti-Aβ antibodies to 19- and 23-month old APP-transgenic mice. METHODS: We investigated the effects of weekly anti-Aβ antibody treatment on radial-arm water-maze performance, parenchymal and vascular amyloid loads, and the presence of microhemorrhage in the brain. 19-month-old mice were treated for 1, 2 or 3 months while 23-month-old mice were treated for 5 months. Only the 23-month-old mice were subject to radial-arm water-maze testing. RESULTS: After 3 months of weekly injections, this passive immunization protocol completely reversed learning and memory deficits in these mice, a benefit that was undiminished after 5 months of treatment. Dramatic reductions of diffuse Aβ immunostaining and parenchymal Congophilic amyloid deposits were observed after five months, indicating that even well-established amyloid deposits are susceptible to immunotherapy. However, cerebral amyloid angiopathy increased substantially with immunotherapy, and some deposits were associated with microhemorrhage. Reanalysis of results collected from an earlier time-course study demonstrated that these increases in vascular deposits were dependent on the duration of immunotherapy. CONCLUSIONS: The cognitive benefits of passive immunotherapy persist in spite of the presence of vascular amyloid and small hemorrhages. These data suggest that clinical trials evaluating such treatments will require precautions to minimize potential adverse events associated with microhemorrhage
Knowledge-based vision and simple visual machines
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong
- …
