576 research outputs found
Effect of dissipative forces on the theory of a single-atom microlaser
We describe a one-atom microlaser involving Poissonian input of atoms with a
fixed flight time through an optical resonator. The influence of the cavity
reservoir during the interactions of successive individual atoms with the
cavity field is included in the analysis. The atomic decay is also considered
as it is nonnegligible in the optical regime. During the random intervals of
absence of any atom in the cavity, the field evolves under its own dynamics. We
discuss the steady-state characteristics of the cavity field. Away from laser
threshold, the field can be nonclassical in nature.Comment: 9 pages in LaTex; 3 PS figure
Diffusion Limited Aggregation with Power-Law Pinning
Using stochastic conformal mapping techniques we study the patterns emerging
from Laplacian growth with a power-law decaying threshold for growth
(where is the radius of the particle cluster). For
the growth pattern is in the same universality class as diffusion
limited aggregation (DLA) growth, while for the resulting patterns
have a lower fractal dimension than a DLA cluster due to the
enhancement of growth at the hot tips of the developing pattern. Our results
indicate that a pinning transition occurs at , significantly
smaller than might be expected from the lower bound
of multifractal spectrum of DLA. This limiting case shows that the most
singular tips in the pruned cluster now correspond to those expected for a
purely one-dimensional line. Using multifractal analysis, analytic expressions
are established for both close to the breakdown of DLA universality
class, i.e., , and close to the pinning transition, i.e.,
.Comment: 5 pages, e figures, submitted to Phys. Rev.
Direct measurement of finite-time disentanglement induced by a reservoir
We propose a method for directly probing the dynamics of disentanglement of
an initial two-qubit entangled state, under the action of a reservoir. We show
that it is possible to detect disentanglement, for experimentally realizable
examples of decaying systems, through the measurement of a single observable,
which is invariant throughout the decay. The systems under consideration may
lead to either finite-time or asymptotic disentanglement. A general
prescription for measuring this observable, which yields an operational meaning
to entanglement measures, is proposed, and exemplified for cavity quantum
electrodynamics and trapped ions.Comment: 4 pages, 2 figure
Modelling the Recoherence of Mesoscopic Superpositions in Dissipative Environments
A model is presented to describe the recently proposed experiment (J.
Raimond,
M. Brune and S. Haroche Phys. Rev. Lett {\bf 79}, 1964 (1997)) where a
mesoscopic superposition of radiation states is prepared in a high-Q cavity
which is coupled to a similar resonator. The dynamical coherence loss of such
state in the absence of dissipation is reversible and can in principle be
observed. We show how this picture is modified due to the presence of the
environmental couplings. Analytical expressions for the experimental
conditional probabilities and the linear entropy are given. We conclude that
the phenomenon can still be observed provided the ratio between the damping
constant and the inter-cavities coupling does not exceed about a few percent.
This observation is favored for superpositions of states with large overlap.Comment: 13 pages, 6 figure
Physical interpretation of stochastic Schroedinger equations in cavity QED
We propose physical interpretations for stochastic methods which have been
developed recently to describe the evolution of a quantum system interacting
with a reservoir. As opposed to the usual reduced density operator approach,
which refers to ensemble averages, these methods deal with the dynamics of
single realizations, and involve the solution of stochastic Schr\"odinger
equations. These procedures have been shown to be completely equivalent to the
master equation approach when ensemble averages are taken over many
realizations. We show that these techniques are not only convenient
mathematical tools for dissipative systems, but may actually correspond to
concrete physical processes, for any temperature of the reservoir. We consider
a mode of the electromagnetic field in a cavity interacting with a beam of two-
or three-level atoms, the field mode playing the role of a small system and the
atomic beam standing for a reservoir at finite temperature, the interaction
between them being given by the Jaynes-Cummings model. We show that the
evolution of the field states, under continuous monitoring of the state of the
atoms which leave the cavity, can be described in terms of either the Monte
Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger
equation, depending on the system configuration. We also show that the Monte
Carlo Wave-Function approach leads, for finite temperatures, to localization
into jumping Fock states, while the diffusion equation method leads to
localization into states with a diffusing average photon number, which for
sufficiently small temperatures are close approximations to mildly squeezed
states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution
postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.
Methods for Reliable Teleportation
Recent experimental results and proposals towards implementation of quantum
teleportation are discussed. It is proved that reliable (theoretically, 100%
probability of success) teleportation cannot be achieved using the methods
applied in recent experiments, i.e., without quantum systems interacting one
with the other. Teleportation proposal involving atoms and electro-magnetic
cavities are reviewed and the most feasible methods are described. In
particular, the language of nonlocal measurements has been applied which has
also been used for presenting a method for teleportation of quantum states of
systems with continuous variables.Comment: 11 pages, 5eps figure
Fundamental solution method applied to time evolution of two energy level systems: exact and adiabatic limit results
A method of fundamental solutions has been used to investigate transitions in
two energy level systems with no level crossing in a real time. Compact
formulas for transition probabilities have been found in their exact form as
well as in their adiabatic limit. No interference effects resulting from many
level complex crossings as announced by Joye, Mileti and Pfister (Phys. Rev.
{\bf A44} 4280 (1991)) have been detected in either case. It is argued that
these results of this work are incorrect. However, some effects of Berry's
phases are confirmed.Comment: LaTeX2e, 23 pages, 8 EPS figures. Style correcte
Teleportation of a Zero-and One-photon Running Wave State by Projection Synthesis
We show how to teleport a running wave superposition of zero- and one-photon
field state through the projection synthesis technique. The fidelity of the
scheme is computed taking into account the noise introduced by dissipation and
the efficiency of the detectors. These error sources have been introduced
through a single general relationship between input and output operators.Comment: 11 pages, 1 figur
Squeezing generation and revivals in a cavity-ion system in contact with a reservoir
We consider a system consisting of a single two-level ion in a harmonic trap,
which is localized inside a non-ideal optical cavity at zero temperature and
subjected to the action of two external lasers. We are able to obtain an
analytical solution for the total density operator of the system and show that
squeezing in the motion of the ion and in the cavity field is generated. We
also show that complete revivals of the states of the motion of the ion and of
the cavity field occur periodically.Comment: 9 pages, 3 figure
- …
