576 research outputs found

    Effect of dissipative forces on the theory of a single-atom microlaser

    Get PDF
    We describe a one-atom microlaser involving Poissonian input of atoms with a fixed flight time through an optical resonator. The influence of the cavity reservoir during the interactions of successive individual atoms with the cavity field is included in the analysis. The atomic decay is also considered as it is nonnegligible in the optical regime. During the random intervals of absence of any atom in the cavity, the field evolves under its own dynamics. We discuss the steady-state characteristics of the cavity field. Away from laser threshold, the field can be nonclassical in nature.Comment: 9 pages in LaTex; 3 PS figure

    Diffusion Limited Aggregation with Power-Law Pinning

    Full text link
    Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth RNγR_N^{-\gamma} (where RNR_N is the radius of the NN- particle cluster). For γ>1\gamma > 1 the growth pattern is in the same universality class as diffusion limited aggregation (DLA) growth, while for γ<1\gamma < 1 the resulting patterns have a lower fractal dimension D(γ)D(\gamma) than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at γ=1/2\gamma = 1/2, significantly smaller than might be expected from the lower bound αmin0.67\alpha_{min} \simeq 0.67 of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for D(γ)D(\gamma) both close to the breakdown of DLA universality class, i.e., γ1\gamma \lesssim 1, and close to the pinning transition, i.e., γ1/2\gamma \gtrsim 1/2.Comment: 5 pages, e figures, submitted to Phys. Rev.

    Direct measurement of finite-time disentanglement induced by a reservoir

    Full text link
    We propose a method for directly probing the dynamics of disentanglement of an initial two-qubit entangled state, under the action of a reservoir. We show that it is possible to detect disentanglement, for experimentally realizable examples of decaying systems, through the measurement of a single observable, which is invariant throughout the decay. The systems under consideration may lead to either finite-time or asymptotic disentanglement. A general prescription for measuring this observable, which yields an operational meaning to entanglement measures, is proposed, and exemplified for cavity quantum electrodynamics and trapped ions.Comment: 4 pages, 2 figure

    Modelling the Recoherence of Mesoscopic Superpositions in Dissipative Environments

    Full text link
    A model is presented to describe the recently proposed experiment (J. Raimond, M. Brune and S. Haroche Phys. Rev. Lett {\bf 79}, 1964 (1997)) where a mesoscopic superposition of radiation states is prepared in a high-Q cavity which is coupled to a similar resonator. The dynamical coherence loss of such state in the absence of dissipation is reversible and can in principle be observed. We show how this picture is modified due to the presence of the environmental couplings. Analytical expressions for the experimental conditional probabilities and the linear entropy are given. We conclude that the phenomenon can still be observed provided the ratio between the damping constant and the inter-cavities coupling does not exceed about a few percent. This observation is favored for superpositions of states with large overlap.Comment: 13 pages, 6 figure

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Methods for Reliable Teleportation

    Full text link
    Recent experimental results and proposals towards implementation of quantum teleportation are discussed. It is proved that reliable (theoretically, 100% probability of success) teleportation cannot be achieved using the methods applied in recent experiments, i.e., without quantum systems interacting one with the other. Teleportation proposal involving atoms and electro-magnetic cavities are reviewed and the most feasible methods are described. In particular, the language of nonlocal measurements has been applied which has also been used for presenting a method for teleportation of quantum states of systems with continuous variables.Comment: 11 pages, 5eps figure

    Fundamental solution method applied to time evolution of two energy level systems: exact and adiabatic limit results

    Get PDF
    A method of fundamental solutions has been used to investigate transitions in two energy level systems with no level crossing in a real time. Compact formulas for transition probabilities have been found in their exact form as well as in their adiabatic limit. No interference effects resulting from many level complex crossings as announced by Joye, Mileti and Pfister (Phys. Rev. {\bf A44} 4280 (1991)) have been detected in either case. It is argued that these results of this work are incorrect. However, some effects of Berry's phases are confirmed.Comment: LaTeX2e, 23 pages, 8 EPS figures. Style correcte

    Teleportation of a Zero-and One-photon Running Wave State by Projection Synthesis

    Full text link
    We show how to teleport a running wave superposition of zero- and one-photon field state through the projection synthesis technique. The fidelity of the scheme is computed taking into account the noise introduced by dissipation and the efficiency of the detectors. These error sources have been introduced through a single general relationship between input and output operators.Comment: 11 pages, 1 figur

    Squeezing generation and revivals in a cavity-ion system in contact with a reservoir

    Full text link
    We consider a system consisting of a single two-level ion in a harmonic trap, which is localized inside a non-ideal optical cavity at zero temperature and subjected to the action of two external lasers. We are able to obtain an analytical solution for the total density operator of the system and show that squeezing in the motion of the ion and in the cavity field is generated. We also show that complete revivals of the states of the motion of the ion and of the cavity field occur periodically.Comment: 9 pages, 3 figure
    corecore