783 research outputs found

    Cerebral Amyloid and Hypertension are Independently Associated with White Matter Lesions in Elderly.

    Get PDF
    In cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to exposure to systemic vascular injury processes associated with highly prevalent vascular risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However, cerebral amyloid accumulation is also prevalent in this population and is associated with WMH accrual. Therefore, we examined the independent associations of amyloid burden and VRFs with WMH burden in CN elderly individuals with low to moderate vascular risk. Participants (n = 150) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) received fluid attenuated inversion recovery (FLAIR) MRI at study entry. Total WMH volume was calculated from FLAIR images co-registered with structural MRI. Amyloid burden was determined by cerebrospinal fluid Aβ1-42 levels. Clinical histories of VRFs, as well as current measurements of vascular status, were recorded during a baseline clinical evaluation. We tested ridge regression models for independent associations and interactions of elevated blood pressure (BP) and amyloid to total WMH volume. We found that greater amyloid burden and a clinical history of hypertension were independently associated with greater WMH volume. In addition, elevated BP modified the association between amyloid and WMH, such that those with either current or past evidence of elevated BP had greater WMH volumes at a given burden of amyloid. These findings are consistent with the hypothesis that cerebral amyloid accumulation and VRFs are independently associated with clinically latent white matter damage represented by WMHs. The potential contribution of amyloid to WMHs should be further explored, even among elderly individuals without cognitive impairment and with limited VRF exposure

    Are the black hole masses in Narrow Line Seyfert 1 galaxies actually small?

    Full text link
    Narrow Line Seyfert 1 galaxies (NLS1s) are generally considered peculiar objects among the broad class of Type 1 active galactic nuclei, due to the relatively small width of the broad lines, strong X-ray variability, soft X-ray continua, weak [OIII], and strong FeII line intensities. The mass M_BH of the central massive black hole (MBH) is claimed to be lighter than expected from known MBH-host galaxy scaling relations, while the accretion rate onto the MBH larger than the average value appropriate to Seyfert 1 galaxies. In this Letter, we show that NLS1 peculiar M_BH and L/L_Edd turn out to be fairly standard, provided that the broad line region is allowed to have a disc-like, rather than isotropic, geometry. Assuming that NLS1s are rather ``normal'' Seyfert 1 objects seen along the disc axis, we could estimate the typical inclination angles from the fraction of Seyfert 1 classified as NLS1s, and compute the geometrical factor relating the observed FWHM of broad lines to the virial mass of the MBH. We show that the geometrical factor can fully account for the "black hole mass deficit" observed in NLS1s, and that L/L_Edd is (on average) comparable to the value of the more common broad line Seyfert 1 galaxies.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Wrong version was uploaded! Check for the correct one in the replacemen

    Communication Modes with Large Intelligent Surfaces in the near Field

    Get PDF
    This paper proposes a practical method for the definition of communication modes when antennas operate in the near-field region, by realizing ad-hoc beams exploiting the focusing capability of large antennas. The beamspace modeling proposed to define the communication modes is then exploited to derive expressions for their number (i.e., the degrees of freedom) in a generic setup, beyond the traditional paraxial scenario, together with closed-form definitions for the basis set at the transmitting and receiving antennas for several cases of interest, such as for the communication between a large antenna and a small antenna. Numerical results show that quasi-optimal communication can be obtained starting from focusing functions. This translates into the possibility of a significant enhancement of the channel capacity even in line-of-sight channel condition, without the need of implementing optimal but complex phase/amplitude profiles on transmitting/receiving antennas as well as resorting to intensive numerical solutions. Traditional results valid under paraxial approximation are revised in light of the proposed modeling, showing that similar conclusions can be obtained from different perspectives

    COLDz: Karl G. Jansky Very Large Array discovery of a gas-rich galaxy in COSMOS

    Get PDF
    The broad spectral bandwidth at mm and cm-wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the discovery of a gas-rich, star-forming galaxy at z = 2.48, through the detection of CO(1-0) line emission in the COLDz survey, through a sensitive, Ka-band (31 to 39 GHz) VLA survey of a 6.5 square arcminute region of the COSMOS field. We argue that the broad line (FWHM ~570 +/- 80 km/s) is most likely to be CO(1-0) at z=2.48, as the integrated emission is spatially coincident with an infrared-detected galaxy with a photometric redshift estimate of z = 3.2 +/- 0.4. The CO(1-0) line luminosity is L'_CO = (2.2 +/- 0.3) x 10^{10} K km/s pc^2, suggesting a cold molecular gas mass of M_gas ~ (2 - 8)x10^{10}M_solar depending on the assumed value of the molecular gas mass to CO luminosity ratio alpha_CO. The estimated infrared luminosity from the (rest-frame) far-infrared spectral energy distribution (SED) is L_IR = 2.5x10^{12} L_solar and the star-formation rate is ~250 M_solar/yr, with the SED shape indicating substantial dust obscuration of the stellar light. The infrared to CO line luminosity ratio is ~114+/-19 L_solar/(K km/s pc^2), similar to galaxies with similar SFRs selected at UV/optical to radio wavelengths. This discovery confirms the potential for molecular emission line surveys as a route to study populations of gas-rich galaxies in the future

    Properties of Accretion Flows Around Coalescing Supermassive Black Holes

    Full text link
    What are the properties of accretion flows in the vicinity of coalescing supermassive black holes (SBHs)? The answer to this question has direct implications for the feasibility of coincident detections of electromagnetic (EM) and gravitational wave (GW) signals from coalescences. Such detections are considered to be the next observational grand challenge that will enable testing general relativity in the strong, nonlinear regime and improve our understanding of evolution and growth of these massive compact objects. In this paper we review the properties of the environment of coalescing binaries in the context of the circumbinary disk and hot, radiatively inefficient accretion flow models and use them to mark the extent of the parameter space spanned by this problem. We report the results from an ongoing, general relativistic, hydrodynamical study of the inspiral and merger of black holes, motivated by the latter scenario. We find that correlated EM+GW oscillations can arise during the inspiral phase followed by the gradual rise and subsequent drop-off in the light curve at the time of coalescence. While there are indications that the latter EM signature is a more robust one, a detection of either signal coincidentally with GWs would be a convincing evidence for an impending SBH binary coalescence. The observability of an EM counterpart in the hot accretion flow scenario depends on the details of a model. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, upper limits on luminosity imply that they may be identified by EM searches out to z~0.1-1. However, given the radiatively inefficient nature of the gas flow, we speculate that a majority of massive binaries may appear as low luminosity AGN in the local universe.Comment: Revised version accepted to Class. Quantum Grav. for proceedings of 8th LISA Symposium. 15 pages, 3 figures, includes changes suggested in referee report

    Multiple AGN in the crowded field of the compact group SDSS J0959+1259

    Get PDF
    We present a multiwavelength study of a newly discovered compact group (CG), SDSS J0959+1259, based data from XMM-Newton, Sloan Digital Sky Survey (SDSS) and the Calar Alto optical imager BUSCA. With a maximum velocity offset of 500km s−1, a mean redshift of 0.035, and a mean spatial extension of 480kpc, this CG is exceptional in having the highest concentration of nuclear activity in the local Universe, established with a sensitivity limit LX > 4 × 1040ergs−1 in 2-10keV band and R-band magnitude MR < −19. The group is composed of two type-2 Seyferts, one type-1 Seyfert, two LINERs and three star-forming galaxies. Given the high X-ray luminosity of LINERs which reaches ∼1041ergs−1, it is likely that they are also accretion driven, bringing the number of active nuclei in this group to five out of eight (AGN fraction of 60 per cent). The distorted shape of one member of the CG suggests that strong interactions are taking place among its galaxies through tidal forces. Therefore, this system represents a case study for physical mechanisms that trigger nuclear activity and star formation in CG

    A Population of Radio-loud Narrow Line Seyfert 1 Galaxies with Blazar-like Properties?

    Full text link
    (abridged) We present a comprehensive study of a sample of 23 genuine radio-loud NLS1 galaxies which have the radio-loudness parameters greater than 100. The radio sources of the sample are ubiquitously compact. A significant fraction of these objects show interesting radio to X-ray properties that are unusual to most of the previously known radio-loud NLS1 AGN, but are reminiscent of blazars. These include flat radio spectra, large amplitude flux and spectral variability, compact VLBI cores, very high brightness temperatures derived from variability, enhanced optical emission in excess of the normal ionising continuum, flat X-ray spectra, and blazar-like SEDs. We interpret them as evidence for the postulated blazar nature of these very radio-loud NLS1 AGN, which might possess at least moderately relativistic jets. Intrinsically, some of the objects have relatively low radio power and would have been classified as radio-intermediate AGN. The black hole masses are estimated to be within 10^{6-8}Msun, and the inferred Eddington ratios are around unity. The results imply that radio-loud AGN may be powered by black holes with moderate masses (10^{6-7}Msun) accreting at high rates. We find that a significant fraction of the objects, despite having strong emission lines, resemble high-energy peaked BL Lacs (HBL) in their SED. Given the peculiarities of blazar-like NLS1 galaxies, questions arise as to whether they are plain downsizing extensions of normal radio-loud AGN, or whether they form a previously unrecognised population.Comment: Comments: 29 pages, 16 figures, 4 tables, accepted for publication in Ap

    CAIXA: a Catalogue of AGN In the XMM-Newton Archive II. Multiwavelength correlations

    Get PDF
    We presented CAIXA, a Catalogue of AGN in the XMM-Newton Archive, in a companion paper. Here, a systematic search for correlations between the X-ray spectral properties and the multiwavelength data was performed for the sources in CAIXA. All the significant (>99.9% confidence level) correlations are discussed along with their physical implications on current models of AGN. Two main correlations are discussed in this paper: a) a very strong anti-correlation between the FWHM of the Hβ\beta optical line and the ratio between the soft and the hard X-ray luminosity. Although similar anti-correlations between optical line width and X-ray spectral steepness have already been discussed in the literature (see e.g., Laor et al. 1994, Boller et al. 1996, Brandt et al. 1997), we consider the formulation we present in this paper is more fundamental, as it links model-independent quantities. Coupled with a strong anti-correlation between the V to hard X-ray flux ratio and the Hβ\beta FHWM, it supports scenarios for the origin of the soft excess in AGN, which require strong suppression of the hard X-ray emission; b) a strong (and expected) correlation between the X-ray luminosity and the black hole mass. Its slope, flatter than 1, is consistent with Eddington ratio-dependent bolometric corrections, such as that recently proposed by Vasudevan & Fabian (2009). Moreover, we critically review through various statistical tests the role that distance biases play in the strong radio to X-ray luminosity correlation found in CAIXA and elsewhere; we conclude that only complete, unbiased samples (such as that recently published by Behar & Laor, 2008) should be used to draw observational constraints on the origin of radio emission in radio-quiet AGN.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysics; two figures erroneously attached by astroph to the paper were remove

    An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5

    Get PDF
    Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained the only one known at z>7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old---just five percent of its current age---reinforces models of early black-hole growth that allow black holes with initial masses of more than about 1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman alpha emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342+0928 is neutral. We derive a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio
    corecore