309 research outputs found
Les espaces de l'halieutique
L'étang de Thau est un espace lagunaire semi fermé dont les communications avec la mer sont limitées. L'exploitation de la palourde, ressource intrinsèquement peu mobile, est au coeur de l'activité de pêche dans cet étang. Il semble donc, a priori, que les notions d'espace mis en oeuvre par l'exploitation de cette ressource présentent un caractère de proximité et une dimension localisée à l'écosystème "étang de Thau". Dès lors, on pourrait penser que la connaissance écologique de ce milieu - où d'importants programmes scientifiques ont été réalisées -, alliée à la faible mobilité de cette population de bivalves fouisseurs, constituent des conditions favorables à une gestion "efficace" de cet écosystème. Ce sentiment est renforcé par le contexte social dans lequel évoluent les communautés de pêcheurs qui ont derrière elles une longue pratique de la gestion (prud'homies). Or, après une période florissante achevée en 1992, cette pêcherie traverse une crise aiguë. Les professionnels constatent en effect une forte diminution des stocks qui se traduit par (i) une régression des quantités pêchées par jours de travail (PUE) (ii) une diminution des prix (contre toute logique de marché) et (iii) une décroissance du nombre de pêcheurs. Parallèlement on observe une transformation des méthodes de pêche avec la généralisation de la pêche en plongée aux dépens de "l'arselière" technique traditionnelle qui a quasiment disparu. Dans ce contexte, et à la demande de la profesison, un programme pluridisciplinaire (programme Palourde) a été mis en oeuvre afin d'identifier les limites du système actuel puis d'élaborer un nouveau système de gestion. Ce travail a été mené selon une démarche de concertation élargie de l'ensemble des partenaires de l'exploitation (pêcheurs, mareyeurs, gestionnaires) et de façon négociée entre les acteurs... (Résumé d'auteur
From error bounds to the complexity of first-order descent methods for convex functions
This paper shows that error bounds can be used as effective tools for
deriving complexity results for first-order descent methods in convex
minimization. In a first stage, this objective led us to revisit the interplay
between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can
show the equivalence between the two concepts for convex functions having a
moderately flat profile near the set of minimizers (as those of functions with
H\"olderian growth). A counterexample shows that the equivalence is no longer
true for extremely flat functions. This fact reveals the relevance of an
approach based on KL inequality. In a second stage, we show how KL inequalities
can in turn be employed to compute new complexity bounds for a wealth of
descent methods for convex problems. Our approach is completely original and
makes use of a one-dimensional worst-case proximal sequence in the spirit of
the famous majorant method of Kantorovich. Our result applies to a very simple
abstract scheme that covers a wide class of descent methods. As a byproduct of
our study, we also provide new results for the globalization of KL inequalities
in the convex framework.
Our main results inaugurate a simple methodology: derive an error bound,
compute the desingularizing function whenever possible, identify essential
constants in the descent method and finally compute the complexity using the
one-dimensional worst case proximal sequence. Our method is illustrated through
projection methods for feasibility problems, and through the famous iterative
shrinkage thresholding algorithm (ISTA), for which we show that the complexity
bound is of the form where the constituents of the bound only depend
on error bound constants obtained for an arbitrary least squares objective with
regularization
An update on the Hirsch conjecture
The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to
George Dantzig. It states that the graph of a d-dimensional polytope with n
facets cannot have diameter greater than n - d.
Despite being one of the most fundamental, basic and old problems in polytope
theory, what we know is quite scarce. Most notably, no polynomial upper bound
is known for the diameters that are conjectured to be linear. In contrast, very
few polytopes are known where the bound is attained. This paper collects
known results and remarks both on the positive and on the negative side of the
conjecture. Some proofs are included, but only those that we hope are
accessible to a general mathematical audience without introducing too many
technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2
and put into the appendix arXiv:0912.423
Artificial reefs: from ecological processes to fishing enhancement tools
info:eu-repo/semantics/publishedVersio
The Double Star Plasma Electron and Current Experiment
The Double Star Project is a collaboration between Chinese and European space agencies, in which two Chinese magnetospheric research spacecraft, carrying Chinese and European instruments, have been launched into equatorial (on 29 December 2003) and polar (on 25 July 2004) orbits designed to enable complementary studies with the Cluster spacecraft. The two Double Star spacecraft TC-1 and TC-2 each carry a Double Star Plasma Electron and Current Experiment (PEACE) instrument. These two instruments were based on Cluster Flight Spare equipment, but differ from Cluster instruments in two important respects. Firstly, a Double Star PEACE instrument has only a single sensor, which must be operated in a manner not originally envisaged in the Cluster context in order to sample the full range of energies. Secondly, the DPU hardware was modified and major changes of onboard software were implemented, most notably a completely different approach to data compression has been adopted for Double Star, which allows high resolution 3-dimensional distributions to be transmitted almost every spin, a significant improvement over Cluster. This paper describes these instruments, and includes examples of data collected in various magnetospheric regions encountered by the spacecraft which have been chosen to illustrate the power of combined Double Star and Cluster measurements
Ethanol application at veraison decreases acidity in Cabernet Sauvignon grapes
Research NoteSpraying ethanol (5 % v/v in water) onto grape clusters at mid-veraison led to a 30 % drop in the malic acid concentration at harvest. As a consequence, titratable acidity also dropped by 10 %. The concentration of tartaric acid did not change significantly. The mode of action of ethanol on malic acid metabolism is discussed.
The CPLEAR detector at CERN
The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using and produced by the annihilation of 's in a hydrogen gas target. The and are identified by their companion products of the annihilation which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.
Coronary MR angiography at 3T: fat suppression versus water-fat separation
Objectives: To compare Dixon water-fat suppression with spectral pre-saturation with inversion recovery (SPIR) at 3T for coronary magnetic resonance angiography (MRA) and to demonstrate the feasibility of fat suppressed coronary MRA at 3T without administration of a contrast agent. Materials and methods: Coronary MRA with Dixon water-fat separation or with SPIR fat suppression was compared on a 3T scanner equipped with a 32-channel cardiac receiver coil. Eight healthy volunteers were examined. Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), right coronary artery (RCA), and left anterior descending (LAD) coronary artery sharpness and length were measured and statistically compared. Two experienced cardiologists graded the visual image quality of reformatted Dixon and SPIR images (1: poor quality to 5: excellent quality). Results: Coronary MRA images in healthy volunteers showed improved contrast with the Dixon technique compared to SPIR (CNR blood-fat: Dixon = 14.9 ± 2.9 and SPIR = 13.9 ± 2.1; p = 0.08, CNR blood-myocardium: Dixon = 10.2 ± 2.7 and SPIR = 9.11 ± 2.6; p = 0.1). The Dixon method led to similar fat suppression (fat SNR with Dixon: 2.1 ± 0.5 vs. SPIR: 2.4 ± 1.2, p = 0.3), but resulted in significantly increased SNR of blood (blood SNR with Dixon: 19.9 ± 4.5 vs. SPIR: 15.5 ± 3.1, p < 0.05). This means the residual fat signal is slightly lower with the Dixon compared to the SIPR technique (although not significant), while the SNR of blood is significantly higher with the Dixon technique. Vessel sharpness of the RCA was similar for Dixon and SPIR (57 ± 7 % vs. 56 ± 9 %, p = 0.2), while the RCA visualized vessel length was increased compared to SPIR fat suppression (107 ± 21 vs. 101 ± 21 mm, p < 0.001). For the LAD, vessel sharpness (50 ± 13 % vs. 50 ± 7 %, p = 0.4) and vessel length (92 ± 46 vs. 90 ± 47 mm, p = 0.4) were similar with both techniques. Consequently, the Dixon technique resulted in an improved visual score of the coronary arteries in the water fat separated images of healthy subjects (RCA: 4.6 ± 0.5 vs. 4.1 ± 0.7, p = 0.01, LAD: 4.1 ± 0.7 vs. 3.5 ± 0.8, p = 0.007). Conclusions: Dixon water-fat separation can significantly improve coronary artery image quality without the use of a contrast agent at 3T
LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways
Background: The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer.
Methodology/Principal Findings: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures.
Conclusions: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion
- …
