1,233 research outputs found
Channel saturation and conductance quantization in single-atom gold constrictions
Notwithstanding the discreteness of metallic constrictions, it is shown that
the finite elasticity of stable, single-atom gold constrictions allows for a
continuous and reversible change in conductance, thereby enabling observation
of channel saturation and conductance quantization. The observed channel
saturation and signature for conductance quantization is achieved by
superposition of atomic/subatomic-scale oscillations on a
retracting/approaching gold tip against a gold substrate of a scanning probe.
Results also show that conductance histograms are neither suitable for
evaluating the stability of atomic configurations through peak positions or
peak height nor appropriate for assessing conductance quantization. A large
number of atomic configurations with similar conductance values give rise to
peaks in the conductance histogram. The positions of the peaks and counts at
each peak can be varied by changing the conditions under which the histograms
are made. Histogram counts below 1Go cannot necessarily be assumed to arise
from single-atom constrictions
Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study
With a view towards optimizing gas storage and separation in crystalline and
disordered nanoporous carbon-based materials, we use ab initio density
functional theory calculations to explore the effect of chemical
functionalization on gas binding to exposed edges within model carbon
nanostructures. We test the geometry, energetics, and charge distribution of
in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene
nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3.
Although different choices for the exchange-correlation functional lead to a
spread of values for the binding energy, trends across the functional groups
are largely preserved for each choice, as are the final orientations of the
adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly
a factor of two. However, the two gases follow very similar trends with changes
in the attached functional group, despite different molecular symmetries. Our
results indicate that the presence of NH2, H2PO3, NO2, and COOH functional
groups can significantly enhance gas binding with respect to a
hydrogen-passivated edge, making the edges potentially viable binding sites in
materials with high concentrations of edge carbons. To first order, in-plane
binding strength correlates with the larger permanent and induced dipole
moments on these groups. Implications for tailoring carbon structures for
increased gas uptake and improved CO2/CH4 selectivity are discussed.Comment: 12 pages, 7 figure
Anomalous insulator metal transition in boron nitride-graphene hybrid atomic layers
The study of two-dimensional (2D) electronic systems is of great fundamental
significance in physics. Atomic layers containing hybridized domains of
graphene and hexagonal boron nitride (h-BNC) constitute a new kind of
disordered 2D electronic system. Magneto-electric transport measurements
performed at low temperature in vapor phase synthesized h-BNC atomic layers
show a clear and anomalous transition from an insulating to a metallic behavior
upon cooling. The observed insulator to metal transition can be modulated by
electron and hole doping and by the application of an external magnetic field.
These results supported by ab-initio calculations suggest that this transition
in h-BNC has distinctly different characteristics when compared to other 2D
electron systems and is the result of the coexistence between two distinct
mechanisms, namely, percolation through metallic graphene networks and hopping
conduction between edge states on randomly distributed insulating h-BN domains.Comment: 9 pages, 15 figure
Reconstructing the Cosmic Equation of State from Supernova distances
Observations of high-redshift supernovae indicate that the universe is
accelerating. Here we present a {\em model-independent} method for estimating
the form of the potential of the scalar field driving this
acceleration, and the associated equation of state . Our method is
based on a versatile analytical form for the luminosity distance ,
optimized to fit observed distances to distant supernovae and differentiated to
yield and . Our results favor at the
present epoch, steadily increasing with redshift. A cosmological constant is
consistent with our results.Comment: 4 pages, 5 figures, uses RevTex. Minor typo's in equations (1) and
(10) correcte
Poly(amidoamine)s synthesis, characterisation and interaction with BSA
Cationic poly(amidoamine)s (PAAs) were synthesised and characterised by NMR and gel permeation chromatography. Their thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. Although poly(amidoamine)s have been used as endosomolytic polymers for protein intracellular delivery, the interaction of the polymers with the proteins still need to be investigated. BSA was used as a model protein and complexation with the different poly(amidoamine) s was investigated using gel retardation assays, fluorescence spectroscopy and high sensitivity differential scanning calorimetry. Our results indicate that the thermal stability of BSA was affected upon interaction and complexation with the poly(amidoamine)s, however these interactions did not seem to modify the structure of the protein. Polymer flexibility seemed to favour polymer/protein complexation and promoted thermal stability
Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds
We study the accretion of modified Chaplygin gas upon different types of
black hole. Modified Chaplygin gas is one of the best candidates for a combined
model of dark matter and dark energy. In addition, from a field theoretical
point of view the modified Chaplygin gas model is equivalent to that of a
scalar field having a self-interacting potential. We formulate the equations
related to both spherical accretion and disc accretion, and respective winds.
The corresponding numerical solutions of the flow, particularly of velocity,
are presented and are analyzed. We show that the accretion-wind system of
modified Chaplygin gas dramatically alters the wind solutions, producing faster
winds, upon changes in physical parameters, while accretion solutions
qualitatively remain unaffected. This implies that modified Chaplygin gas is
more prone to produce outflow which is the natural consequence of the dark
energy into the system.Comment: 21 pages including 7 figures; published in Classical and Quantum
Gravit
- …
