445 research outputs found
Poets on the Hill: A Contemporary Exploration of Canadian Political Poetry in English
In this thesis, I investigate Canadian poetry that is explicitly about the political (politicians, political parties, or political policies) written in English. I begin by defining political poetry and its aims in Canada and then progress through an examination of three collections of poetry and one poem: The Blasted Pine; Howl Too, Eh?; and Rogue Stimulus. This allows for a comprehensive look at how political poetry has evolved in Canada from a pointed and critical genre that aims to mock and argue to a more subtle, playful genre that utilizes parody and wit. It also demonstrates the evolution and complication of voice in political poetry, given that each poem contains the voice of the poet, the speaker, the public, and the political. I argue that political poetry in Canada is not poetry as dissent, protest, or witness, but rather poetry as inquiry/commission (in the political sense). This definition relies on the fact that Canadian political poetry seeks to ascribe accountability for political actions and decisions and utilizes the poet as spokesperson, speaking for the public to the political (and the public in turn). Canadian political poetry hence arises out of a demand from the public, much like political inquiries do, and through the satirical use of politically correct language and explicit political references calls for action from the political sphere and the public. I further argue that poetry as inquiry also comments on the public itself (including the author/speaker as a member of that public) and that political poetry is transideological.Master of Arts (MA
A method for the reconstruction of unknown non-monotonic growth functions in the chemostat
We propose an adaptive control law that allows one to identify unstable
steady states of the open-loop system in the single-species chemostat model
without the knowledge of the growth function. We then show how one can use this
control law to trace out (reconstruct) the whole graph of the growth function.
The process of tracing out the graph can be performed either continuously or
step-wise. We present and compare both approaches. Even in the case of two
species in competition, which is not directly accessible with our approach due
to lack of controllability, feedback control improves identifiability of the
non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures),
proceedings paper is version v
Measuring the mass of the central black hole in the bulgeless galaxy ngc 4395 from gas dynamical modeling
NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it is one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near-infrared integral field spectrograph Gemini/NIFS and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3. We use the photometric data to model the shape and stellar mass-to-light ratio of the nuclear star cluster (NSC). From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H2 1–0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best-fitting tilted ring models of the kinematics of the molecular hydrogen gas contain a black hole with mass M={4}-3+8× {10}5 M⊙ (3σ uncertainties) embedded in an NSC of mass M=2× {10}6 M⊙. Our black hole mass measurement is in excellent agreement with the reverberation mapping mass estimate of Peterson et al. but shows some tension with other mass measurement methods based on accretion signals
The Lick AGN Monitoring Project: Alternate Routes to a Broad-line Region Radius
It is now possible to estimate black hole masses across cosmic time, using
broad emission lines in active galaxies. This technique informs our views of
how galaxies and their central black holes coevolve. Unfortunately, there are
many outstanding uncertainties associated with these "virial" mass estimates.
One of these comes from using the accretion luminosity to infer a size for the
broad-line region. Incorporating the new sample of low-luminosity active
galaxies from our recent monitoring campaign at Lick Observatory, we
recalibrate the radius-luminosity relation with tracers of the accretion
luminosity other than the optical continuum. We find that the radius of the
broad-line region scales as the square root of the X-ray and Hbeta
luminosities, in agreement with recent optical studies. On the other hand, the
scaling appears to be marginally steeper with narrow-line luminosities. This is
consistent with a previously observed decrease in the ratio of narrow-line to
X-ray luminosity with increasing total luminosity. The radius of the broad-line
region correlates most tightly with Hbeta luminosity, while the X-ray and
narrow-line relations both have comparable scatter of a factor of two. These
correlations provide useful alternative virial BH masses in objects with no
detectable optical/UV continuum emission, such as high-redshift galaxies with
broad emission lines, radio-loud objects, or local active galaxies with
galaxy-dominated continua.Comment: 8 pages, 1 figure, accepted for publication in Ap
A mathematical framework for critical transitions: normal forms, variance and applications
Critical transitions occur in a wide variety of applications including
mathematical biology, climate change, human physiology and economics. Therefore
it is highly desirable to find early-warning signs. We show that it is possible
to classify critical transitions by using bifurcation theory and normal forms
in the singular limit. Based on this elementary classification, we analyze
stochastic fluctuations and calculate scaling laws of the variance of
stochastic sample paths near critical transitions for fast subsystem
bifurcations up to codimension two. The theory is applied to several models:
the Stommel-Cessi box model for the thermohaline circulation from geoscience,
an epidemic-spreading model on an adaptive network, an activator-inhibitor
switch from systems biology, a predator-prey system from ecology and to the
Euler buckling problem from classical mechanics. For the Stommel-Cessi model we
compare different detrending techniques to calculate early-warning signs. In
the epidemics model we show that link densities could be better variables for
prediction than population densities. The activator-inhibitor switch
demonstrates effects in three time-scale systems and points out that excitable
cells and molecular units have information for subthreshold prediction. In the
predator-prey model explosive population growth near a codimension two
bifurcation is investigated and we show that early-warnings from normal forms
can be misleading in this context. In the biomechanical model we demonstrate
that early-warning signs for buckling depend crucially on the control strategy
near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
How special are Brightest Group and Cluster Galaxies?
We use the Sloan Digital Sky Survey to construct a sample of 625 brightest
group and cluster galaxies (BCGs) together with control samples of non-BCGs
matched in stellar mass, redshift, and color. We investigate how the systematic
properties of BCGs depend on stellar mass and on their privileged location near
the cluster center. The groups and clusters that we study are drawn from the C4
catalogue of Miller et al. (2005) but we have developed improved algorithms for
identifying the BCG and for measuring the cluster velocity dispersion. Since
the SDSS photometric pipeline tends to underestimate the luminosities of large
galaxies in dense environments, we have developed a correction for this effect
which can be readily applied to the published catalog data. We find that BCGs
are larger and have higher velocity dispersions than non-BCGs of the same
stellar mass, which implies that BCGs contain a larger fraction of dark matter.
In contrast to non-BCGs, the dynamical mass-to-light ratio of BCGs does not
vary as a function of galaxy luminosity. Hence BCGs lie on a different
fundamental plane than ordinary elliptical galaxies. BCGs also follow a steeper
Faber-Jackson relation than non-BCGs, as suggested by models in which BCGs
assemble via dissipationless mergers along preferentially radial orbits. We
find tentative evidence that this steepening is stronger in more massive
clusters. BCGs have similar mean stellar ages and metallicities to non-BCGs of
the same mass, but they have somewhat higher alpha/Fe ratios, indicating that
star formation may have occurred over a shorter timescale in the BCGs. Finally,
we find that BCGs are more likely to host radio-loud active galactic nuclei
than other galaxies of the same mass, but are less likely to host an optical
AGN. The differences we find are more pronounced for the less massive BCGs.Comment: Replaced with slightly modified version accepted by MNRAS. 28 pages,
25 figures. Version with full resolution figures available at
http://www.mpa-garching.mpg.de/~anja/bcgs_avdl.pd
Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae
In this first paper in a series we present 1298 low-redshift (z\leq0.2)
optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through
2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia
have well-calibrated light curves with measured distance moduli, and many of
the spectra have been corrected for host-galaxy contamination. Most of the data
were obtained using the Kast double spectrograph mounted on the Shane 3 m
telescope at Lick Observatory and have a typical wavelength range of
3300-10,400 Ang., roughly twice as wide as spectra from most previously
published datasets. We present our observing and reduction procedures, and we
describe the resulting SN Database (SNDB), which will be an online, public,
searchable database containing all of our fully reduced spectra and companion
photometry. In addition, we discuss our spectral classification scheme (using
the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilising our
newly constructed set of SNID spectral templates. These templates allow us to
accurately classify our entire dataset, and by doing so we are able to
reclassify a handful of objects as bona fide SNe Ia and a few other objects as
members of some of the peculiar SN Ia subtypes. In fact, our dataset includes
spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present
spectroscopic host-galaxy redshifts of some SNe Ia where these values were
previously unknown. [Abridged]Comment: 34 pages, 11 figures, 11 tables, revised version, re-submitted to
MNRAS. Spectra will be released in January 2013. The SN Database homepage
(http://hercules.berkeley.edu/database/index_public.html) contains the full
tables, plots of all spectra, and our new SNID template
Behavioural Risk Factors in Mid-Life Associated with Successful Ageing, Disability, Dementia and Frailty in Later Life: A Rapid Systematic Review.
BACKGROUND: Smoking, alcohol consumption, poor diet and low levels of physical activity significantly contribute to the burden of illness in developed countries. Whilst the links between specific and multiple risk behaviours and individual chronic conditions are well documented, the impact of these behaviours in mid-life across a range of later life outcomes has yet to be comprehensively assessed. This review aimed to provide an overview of behavioural risk factors in mid-life that are associated with successful ageing and the primary prevention or delay of disability, dementia, frailty and non-communicable chronic conditions. METHODS: A literature search was conducted to identify cohort studies published in English since 2000 up to Dec 2014. Multivariate analyses and a minimum follow-up of five years were required for inclusion. Two reviewers screened titles, abstracts and papers independently. Studies were assessed for quality. Evidence was synthesised by mid-life behavioural risk for a range of late life outcomes. FINDINGS: This search located 10,338 individual references, of which 164 are included in this review. Follow-up data ranged from five years to 36 years. Outcomes include dementia, frailty, disability and cardiovascular disease. There is consistent evidence of beneficial associations between mid-life physical activity, healthy ageing and disease outcomes. Across all populations studied there is consistent evidence that mid-life smoking has a detrimental effect on health. Evidence specific to alcohol consumption was mixed. Limited, but supportive, evidence was available relating specifically to mid-life diet, leisure and social activities or health inequalities. CONCLUSIONS: There is consistent evidence of associations between mid-life behaviours and a range of late life outcomes. The promotion of physical activity, healthy diet and smoking cessation in all mid-life populations should be encouraged for successful ageing and the prevention of disability and chronic disease.This work was funded by the National Institute for Health and Care Excellence (NICE), invitation to tender reference DDER 42013, and supported by the National Institute for Health Research School for Public Health Research. The scope of the work was defined by NICE and the protocol was agreed with NICE prior to the start of work. The funders had no role in data analysis, preparation of the manuscript or decision to publish.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.014440
On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
- …
