8,864 research outputs found
Interpretation of AMS-02 electrons and positrons data
We perform a combined analysis of the recent AMS-02 data on electrons,
positrons, electrons plus positrons and positron fraction, in a self-consistent
framework where we realize a theoretical modeling of all the astrophysical
components that can contribute to the observed fluxes in the whole energy
range. The primary electron contribution is modeled through the sum of an
average flux from distant sources and the fluxes from the local supernova
remnants in the Green catalog. The secondary electron and positron fluxes
originate from interactions on the interstellar medium of primary cosmic rays,
for which we derive a novel determination by using AMS-02 proton and helium
data. Primary positrons and electrons from pulsar wind nebulae in the ATNF
catalog are included and studied in terms of their most significant (while
loosely known) properties and under different assumptions (average contribution
from the whole catalog, single dominant pulsar, a few dominant pulsars). We
obtain a remarkable agreement between our various modeling and the AMS-02 data
for all types of analysis, demonstrating that the whole AMS-02 leptonic data
admit a self-consistent interpretation in terms of astrophysical contributions.Comment: 33 pages, 26 figures and 4 tables, v2: accepted for publication in
JCAP, minor changes relative to v
Secondary Cosmic Ray Nuclei from Supernova Remnants and Constraints to the Propagation Parameters
The secondary-to-primary B/C ratio is widely used to study the cosmic ray
(CR) propagation processes in the Galaxy. It is usually assumed that secondary
nuclei such as Li-Be-B are entirely generated by collisions of heavier CR
nuclei with the interstellar medium (ISM). We study the CR propagation under a
scenario where secondary nuclei can also be produced or accelerated from
galactic sources. We consider the processes of hadronic interactions inside
supernova remnants (SNRs) and re-acceleration of background CRs in strong
shocks. Thus, we investigate their impact in the propagation parameter
determination within present and future data. The spectra of Li-Be-B nuclei
emitted from SNRs are harder than those due to CR collisions with the ISM. The
secondary-to-primary ratios flatten significantly at ~TeV/n energies, both from
spallation and re-acceleration in the sources. The two mechanisms are
complementary to each other and depend on the properties of the local ISM
around the expanding remnants. The secondary production in SNRs is significant
for dense background media, n ~1 cm^-3, while the amount of re-accelerated CRs
is relevant for SNRs expanding into rarefied media, n ~0.1 cm-3. Due to these
effects, the the diffusion parameter 'delta' may be misunderstood by a factor
of ~5-15%. Our estimations indicate that an experiment of the AMS-02 caliber
can constrain the key propagation parameters while breaking the
source-transport degeneracy, for a wide class of B/C-consistent models. Given
the precision of the data expected from on-going experiments, the SNR
production/acceleration of secondary nuclei should be considered, if any, to
prevent a possible mis-determination of the CR transport parameters.Comment: 13 pages, 9 figures; matches the published versio
Automated Analysis of MUTEX Algorithms with FASE
In this paper we study the liveness of several MUTEX solutions by
representing them as processes in PAFAS s, a CCS-like process algebra with a
specific operator for modelling non-blocking reading behaviours. Verification
is carried out using the tool FASE, exploiting a correspondence between
violations of the liveness property and a special kind of cycles (called
catastrophic cycles) in some transition system. We also compare our approach
with others in the literature. The aim of this paper is twofold: on the one
hand, we want to demonstrate the applicability of FASE to some concrete,
meaningful examples; on the other hand, we want to study the impact of
introducing non-blocking behaviours in modelling concurrent systems.Comment: In Proceedings GandALF 2011, arXiv:1106.081
Search for anisotropies in cosmic-ray positrons detected by the PAMELA experiment
The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite
on June 15, 2006. Data collected during the first four years have been used to
search for large-scale anisotropies in the arrival directions of cosmic-ray
positrons. The PAMELA experiment allows for a full sky investigation, with
sensitivity to global anisotropies in any angular window of the celestial
sphere. Data samples of positrons in the rigidity range 10 GV R
200 GV were analyzed. This article discusses the method and the results of the
search for possible local sources through analysis of anisotropy in positron
data compared to the proton background. The resulting distributions of arrival
directions are found to be isotropic. Starting from the angular power spectrum,
a dipole anisotropy upper limit \delta = 0.166 at 95% C.L. is determined.
Additional search is carried out around the Sun. No evidence of an excess
correlated with that direction was found.Comment: The value of the dipole anisotropy upper limit has been changed. The
method is correct but there was a miscalculation in the relative formul
Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy not accessible from the study of the cosmic-ray nuclear
components due to their differing diffusion and energy-loss processes. However,
when measured near Earth, the effects of propagation and modulation of galactic
cosmic rays in the heliosphere, particularly significant for energies up to at
least 30 GeV, must be properly taken into account. In this paper the electron
(e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009
over six-months time intervals are presented. Fluxes are compared with a
state-of-the-art three-dimensional model of solar modulation that reproduces
the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl
Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment
The propagation of cosmic rays inside our galaxy plays a fundamental role in
shaping their injection spectra into those observed at Earth. One of the best
tools to investigate this issue is the ratio of fluxes for secondary and
primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive
probe to investigate propagation mechanisms. This paper presents new
measurements of the absolute fluxes of boron and carbon nuclei, as well as the
B/C ratio, from the PAMELA space experiment. The results span the range 0.44 -
129 GeV/n in kinetic energy for data taken in the period July 2006 - March
2008
Solar energetic particle events: trajectory analysis and flux reconstruction with PAMELA
The PAMELA satellite experiment is providing first direct measurements of
Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV
in near-Earth space, bridging the low energy data by other space-based
instruments and the Ground Level Enhancement (GLE) data by the worldwide
network of neutron monitors. Its unique observational capabilities include the
possibility of measuring the flux angular distribution and thus investigating
possible anisotropies. This work reports the analysis methods developed to
estimate the SEP energy spectra as a function of the particle pitch-angle with
respect to the Interplanetary Magnetic Field (IMF) direction. The crucial
ingredient is provided by an accurate simulation of the asymptotic exposition
of the PAMELA apparatus, based on a realistic reconstruction of particle
trajectories in the Earth's magnetosphere. As case study, the results for the
May 17, 2012 event are presented.Comment: Conference: The 34th International Cosmic Ray Conference (ICRC2015),
30 July - 6 August, 2015, The Hague, The Netherlands, Volume:
PoS(ICRC2015)08
The cosmic-ray positron energy spectrum measured by PAMELA
Precision measurements of the positron component in the cosmic radiation
provide important information about the propagation of cosmic rays and the
nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA
has been used to make a new measurement of the cosmic-ray positron flux and
fraction that extends previously published measurements up to 300 GeV in
kinetic energy. The combined measurements of the cosmic-ray positron energy
spectrum and fraction provide a unique tool to constrain interpretation models.
During the recent solar minimum activity period from July 2006 to December 2009
approximately 24500 positrons were observed. The results cannot be easily
reconciled with purely secondary production and additional sources of either
astrophysical or exotic origin may be required.Comment: 14 pages, 4 figures, 1 table. Accepted for publication in Physical
Review Letters. Corrected a typo in the flux units of Table
- …
