907 research outputs found
Form factors of twist fields in the lattice Dirac theory
We study U(1) twist fields in a two-dimensional lattice theory of massive
Dirac fermions. Factorized formulas for finite-lattice form factors of these
fields are derived using elliptic parametrization of the spectral curve of the
model, elliptic determinant identities and theta functional interpolation. We
also investigate the thermodynamic and the infinite-volume scaling limit, where
the corresponding expressions reduce to form factors of the exponential fields
of the sine-Gordon model at the free-fermion point.Comment: 20 pages, 2 figure
Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit
The bright M dwarf K2-18 at 34 pc is known to host a transiting
super-Earth-sized planet orbiting within the star's habitable zone; K2-18b.
Given the superlative nature of this system for studying an exoplanetary
atmosphere receiving similar levels of insolation as the Earth, we aim to
characterize the planet's mass which is required to interpret atmospheric
properties and infer the planet's bulk composition. We obtain precision radial
velocity measurements with the HARPS spectrograph and couple those measurements
with the K2 photometry to jointly model the observed radial velocity variation
with planetary signals and a radial velocity jitter model based on Gaussian
process regression. We measure the mass of K2-18b to be
M with a bulk density of g/cm which may correspond
to a predominantly rocky planet with a significant gaseous envelope or an ocean
planet with a water mass fraction %. We also find strong evidence
for a second, warm super-Earth K2-18c at days with a semi-major axis
2.4 times smaller than the transiting K2-18b. After re-analyzing the available
light curves of K2-18 we conclude that K2-18c is not detected in transit and
therefore likely has an orbit that is non-coplanar with K2-18b. A suite of
dynamical integrations with varying simulated orbital eccentricities of the two
planets are used to further constrain each planet's eccentricity posterior from
which we measure and at 99% confidence. The discovery
of the inner planet K2-18c further emphasizes the prevalence of multi-planet
systems around M dwarfs. The characterization of the density of K2-18b reveals
that the planet likely has a thick gaseous envelope which along with its
proximity to the Solar system makes the K2-18 planetary system an interesting
target for the atmospheric study of an exoplanet receiving Earth-like
insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in
Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom
Strong quantum memory at resonant Fermi edges revealed by shot noise
Studies of non-equilibrium current fluctuations enable assessing correlations
involved in quantum transport through nanoscale conductors. They provide
additional information to the mean current on charge statistics and the
presence of coherence, dissipation, disorder, or entanglement. Shot noise,
being a temporal integral of the current autocorrelation function, reveals
dynamical information. In particular, it detects presence of non-Markovian
dynamics, i.e., memory, within open systems, which has been subject of many
current theoretical studies. We report on low-temperature shot noise
measurements of electronic transport through InAs quantum dots in the
Fermi-edge singularity regime and show that it exhibits strong memory effects
caused by quantum correlations between the dot and fermionic reservoirs. Our
work, apart from addressing noise in archetypical strongly correlated system of
prime interest, discloses generic quantum dynamical mechanism occurring at
interacting resonant Fermi edges.Comment: 6 pages, 3 figure
Generalized twisted modules associated to general automorphisms of a vertex operator algebra
We introduce a notion of strongly C^{\times}-graded, or equivalently,
C/Z-graded generalized g-twisted V-module associated to an automorphism g, not
necessarily of finite order, of a vertex operator algebra. We also introduce a
notion of strongly C-graded generalized g-twisted V-module if V admits an
additional C-grading compatible with g. Let V=\coprod_{n\in \Z}V_{(n)} be a
vertex operator algebra such that V_{(0)}=\C\one and V_{(n)}=0 for n<0 and let
u be an element of V of weight 1 such that L(1)u=0. Then the exponential of
2\pi \sqrt{-1} Res_{x} Y(u, x) is an automorphism g_{u} of V. In this case, a
strongly C-graded generalized g_{u}-twisted V-module is constructed from a
strongly C-graded generalized V-module with a compatible action of g_{u} by
modifying the vertex operator map for the generalized V-module using the
exponential of the negative-power part of the vertex operator Y(u, x). In
particular, we give examples of such generalized twisted modules associated to
the exponentials of some screening operators on certain vertex operator
algebras related to the triplet W-algebras. An important feature is that we
have to work with generalized (twisted) V-modules which are doubly graded by
the group C/Z or C and by generalized eigenspaces (not just eigenspaces) for
L(0), and the twisted vertex operators in general involve the logarithm of the
formal variable.Comment: Final version to appear in Comm. Math. Phys. 38 pages. References on
triplet W-algebras added, misprints corrected, and expositions revise
Almost-Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics
By using the method of orthogonal polynomials we analyze the statistical
properties of complex eigenvalues of random matrices describing a crossover
from Hermitian matrices characterized by the Wigner- Dyson statistics of real
eigenvalues to strongly non-Hermitian ones whose complex eigenvalues were
studied by Ginibre.
Two-point statistical measures (as e.g. spectral form factor, number variance
and small distance behavior of the nearest neighbor distance distribution
) are studied in more detail. In particular, we found that the latter
function may exhibit unusual behavior for some parameter
values.Comment: 4 pages, RevTE
World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as
a new-generation instrument for CFHT. SPIRou aims in particular at becoming
world-leader on two forefront science topics, (i) the quest for habitable
Earth-like planets around very- low-mass stars, and (ii) the study of low-mass
star and planet formation in the presence of magnetic fields. In addition to
these two main goals, SPIRou will be able to tackle many key programs, from
weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo
processes in fully-convective bodies and planet habitability. The science
programs that SPIRou proposes to tackle are forefront (identified as first
priorities by most research agencies worldwide), ambitious (competitive and
complementary with science programs carried out on much larger facilities, such
as ALMA and JWST) and timely (ideally phased with complementary space missions
like TESS and CHEOPS).
SPIRou is designed to carry out its science mission with maximum efficiency
and optimum precision. More specifically, SPIRou will be able to cover a very
wide single-shot nIR spectral domain (0.98-2.35 \mu m) at a resolving power of
73.5K, providing unpolarized and polarized spectra of low-mass stars with a
~15% average throughput and a radial velocity (RV) precision of 1 m/s.Comment: 12 pages, 5 figures, conference proceedings of the French Society of
Astronomy and Astrophysics meeting 201
Phase Transition of the Ising model on a Hyperbolic Lattice
The matrix product structure is considered on a regular lattice in the
hyperbolic plane. The phase transition of the Ising model is observed on the
hyperbolic lattice by means of the corner-transfer-matrix
renormalization group (CTMRG) method. Calculated correlation length is always
finite even at the transition temperature, where mean-field like behavior is
observed. The entanglement entropy is also always finite.Comment: 4 pages, 3 figure
Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?
(abridged) In the frame of the search for extrasolar planets and brown dwarfs
around early-type main-sequence stars, we present the results obtained on the
early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the
spectra. Our dedicated radial-velocity measurement method was used to monitor
the star's radial velocities over five years. We also use complementary, high
angular resolution and high-contrast images taken with PUEO at CFHT. We show
that Theta Cygni radial velocities are quasi-periodically variable, with a
~150-day period. These variations are not due to the ~0.35-Msun stellar
companion that we detected in imaging at more than 46 AU from the star. The
absence of correlation between the bisector velocity span variations and the
radial velocity variations for this 7 km/s vsini star, as well as other
criteria indicate that the observed radial velocity variations are not due to
stellar spots. The observed amplitude of the bisector velocity span variations
also seems to rule out stellar pulsations. However, we observe a peak in the
bisector velocity span periodogram at the same period as the one found in the
radial velocity periodogram, which indicates a probable link between these
radial velocity variations and the low amplitude lineshape variations which are
of stellar origin. Long-period variations are not expected from this type of
star to our knowledge. If a stellar origin (hence of new type) was to be
confirmed for these long-period radial velocity variations, this would have
several consequences on the search for planets around main-sequence stars, both
in terms of observational strategy and data analysis. An alternative
explanation for these variable radial velocities is the presence of at least
one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
Directly Imaging Rocky Planets from the Ground
Over the past three decades instruments on the ground and in space have
discovered thousands of planets outside the solar system. These observations
have given rise to an astonishingly detailed picture of the demographics of
short-period planets, but are incomplete at longer periods where both the
sensitivity of transit surveys and radial velocity signals plummet. Even more
glaring is that the spectra of planets discovered with these indirect methods
are either inaccessible (radial velocity detections) or only available for a
small subclass of transiting planets with thick, clear atmospheres. Direct
detection can be used to discover and characterize the atmospheres of planets
at intermediate and wide separations, including non-transiting exoplanets.
Today, a small number of exoplanets have been directly imaged, but they
represent only a rare class of young, self-luminous super-Jovian-mass objects
orbiting tens to hundreds of AU from their host stars. Atmospheric
characterization of planets in the <5 AU regime, where radial velocity (RV)
surveys have revealed an abundance of other worlds, is technically feasible
with 30-m class apertures in combination with an advanced AO system,
coronagraph, and suite of spectrometers and imagers. There is a vast range of
unexplored science accessible through astrometry, photometry, and spectroscopy
of rocky planets, ice giants, and gas giants. In this whitepaper we will focus
on one of the most ambitious science goals --- detecting for the first time
habitable-zone rocky (<1.6 R_Earth) exoplanets in reflected light around nearby
M-dwarfsComment: 8 pages, 1 figure, Astro2020 Science White Pape
Periodic boundary conditions on the pseudosphere
We provide a framework to build periodic boundary conditions on the
pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian
space of constant negative curvature. Starting from the common case of periodic
boundary conditions in the Euclidean plane, we introduce all the needed
mathematical notions and sketch a classification of periodic boundary
conditions on the hyperbolic plane. We stress the possible applications in
statistical mechanics for studying the bulk behavior of physical systems and we
illustrate how to implement such periodic boundary conditions in two examples,
the dynamics of particles on the pseudosphere and the study of classical spins
on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.
- …
