3,395 research outputs found
DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification
Copresence verification based on context can improve usability and strengthen
security of many authentication and access control systems. By sensing and
comparing their surroundings, two or more devices can tell whether they are
copresent and use this information to make access control decisions. To the
best of our knowledge, all context-based copresence verification mechanisms to
date are susceptible to context-manipulation attacks. In such attacks, a
distributed adversary replicates the same context at the (different) locations
of the victim devices, and induces them to believe that they are copresent. In
this paper we propose DoubleEcho, a context-based copresence verification
technique that leverages acoustic Room Impulse Response (RIR) to mitigate
context-manipulation attacks. In DoubleEcho, one device emits a wide-band
audible chirp and all participating devices record reflections of the chirp
from the surrounding environment. Since RIR is, by its very nature, dependent
on the physical surroundings, it constitutes a unique location signature that
is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR
data with various mobile devices and in a range of different locations. We show
that DoubleEcho mitigates context-manipulation attacks whereas all other
approaches to date are entirely vulnerable to such attacks. DoubleEcho detects
copresence (or lack thereof) in roughly 2 seconds and works on commodity
devices
Nuclear fragmentation studies for microelectronic application
A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed
Magnetic properties of Gd_xY_{1-x}Fe_2Zn_{20}: dilute, large, moments in a nearly ferromagnetic Fermi liquid
Single crystals of the dilute, rare earth bearing, pseudo-ternary series,
Gd_xY_{1-x}Fe_2Zn_{20} were grown out of Zn-rich solution. Measurements of
magnetization, resistivity and heat capacity on Gd_xY_{1-x}Fe_2Zn_{20} samples
reveal ferromagnetic order of Gd^{3+} local moments across virtually the whole
series (). The magnetic properties of this series, including the
ferromagnetic ordering, the reduced saturated moments at base temperature, the
deviation of the susceptibilities from Curie-Weiss law and the anomalies in the
resistivity, are understood within the frame work of dilute,
moments (Gd^{3+}) embedded in a nearly ferromagnetic Fermi liquid
(YFe_2Zn_{20}). The s-d model is employed to further explain the variation of
with x as well as the temperature dependences of of the
susceptibilities
Star Formation in Collision Debris: Insights from the modeling of their Spectral Energy Distribution
During galaxy-galaxy interactions, massive gas clouds can be injected into
the intergalactic medium which in turn become gravitationally bound, collapse
and form stars, star clusters or even dwarf galaxies. The objects resulting
from this process are both "pristine", as they are forming their first
generation of stars, and chemically evolved because the metallicity inherited
from their parent galaxies is high. Such characteristics make them particularly
interesting laboratories to study star formation. After having investigated
their star-forming properties, we use photospheric, nebular and dust modeling
to analyze here their spectral energy distribution (SED) from the
far-ultraviolet to the mid-infrared regime for a sample of 7 star-forming
regions. Our analysis confirms that the intergalactic star forming regions in
Stephan's Quintet, around Arp 105, and NGC 5291, appear devoid of stellar
populations older than 10^9 years. We also find an excess of light in the
near-infrared regime (from 2 to 4.5 microns) which cannot be attributed to
stellar photospheric or nebular contributions. This excess is correlated with
the star formation rate intensity suggesting that it is probably due to
emission by very small grains fluctuating in temperature as well as the
polycyclic aromatic hydrocarbons (PAH) line at 3.3 micron. Comparing the
attenuation via the Balmer decrement to the mid-infrared emission allows us to
check the reliability of the attenuation estimate. It suggests the presence of
embedded star forming regions in NGC 5291 and NGC 7252. Overall the SED of
star-forming regions in collision debris (and Tidal Dwarf Galaxies) resemble
more that of dusty star-forming regions in galactic disks than to that of
typical star-forming dwarf galaxies.Comment: 22 pages, 24 figures, accepted for publication in A
Design and characterization of SiON integrated optics components for optical coherence tomography
Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical circuits presents a great opportunity to reduce costs and enhance system functionality and performance. We present the design and characterization of SiON-based integrated optics waveguides, splitters, couplers and interferometers for OCT operating at a wavelength of 1.3 um
Observation of a Griffiths-like phase in the paramagnetic regime of ErCo_2
A systematic x-ray magnetic circular dichroism study of the paramagnetic
phase of ErCo2 has recently allowed to identify the inversion of the net
magnetization of the Co net moment with respect to the applied field well above
the ferrimagnetic ordering temperature, Tc. The study of small angle neutron
scattering measurements has also shown the presence of short range order
correlations in the same temperature region. This phenomenon, which we have
denoted parimagnetism, may be related with the onset of a Griffiths-like phase
in paramagnetic ErCo2. We have measured ac susceptibility on ErCo2 as a
function of temperature, applied field, and excitation frequency. Several
characteristics shared by systems showing a Griffiths phase are present in
ErCo2, namely the formation of ferromagnetic clusters in the disordered phase,
the loss of analyticity of the magnetic susceptibility and its extreme
sensitivity to an applied magnetic field. The paramagnetic susceptibility
allows to establish that the magnetic clusters are only formed by Co moments as
well as the intrinsic nature of those Co moments
Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226
We present archival Spitzer photometry and spectroscopy, and Herschel
photometry, of the peculiar "Green Valley" elliptical galaxy NGC~3226. The
galaxy, which contains a low-luminosity AGN, forms a pair with NGC~3227, and is
shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and
16m reveals a curved plume structure 3 kpc in extent, embedded within the
core of the galaxy, and coincident with the termination of a 30 kpc-long HI
tail. In-situ star formation associated with the IR plume is identified from
narrow-band HST imaging. The end of the IR-plume coincides with a warm
molecular hydrogen disk and dusty ring, containing 0.7-1.1 10
M detected within the central kpc. Sensitive upper limits to the
detection of cold molecular gas may indicate that a large fraction of the H
is in a warm state. Photometry, derived from the UV to the far-IR, shows
evidence for a low star formation rate of 0.04 M yr
averaged over the last 100 Myrs. A mid-IR component to the Spectral Energy
Distribution (SED) contributes 20 of the IR luminosity of the galaxy,
and is consistent with emission associated with the AGN. The current measured
star formation rate is insufficient to explain NGC3226's global UV-optical
"green" colors via the resurgence of star formation in a "red and dead" galaxy.
This form of "cold accretion" from a tidal stream would appear to be an
inefficient way to rejuvenate early-type galaxies, and may actually inhibit
star formation.Comment: Accepted for Publication ApJ Oct 201
- …
