288 research outputs found

    Probing Phases and Quantum Criticality using Deviations from the Local Fluctuation-Dissipation Theorem

    Full text link
    Introduction Cold atomic gases in optical lattices are emerging as excellent laboratories for testing models of strongly interacting particles in condensed matter physics. Currently, one of the major open questions is how to obtain the finite temperature phase diagram of a given quantum Hamiltonian directly from experiments. Previous work in this direction required quantum Monte Carlo simulations to directly model the experimental situation in order to extract quantitative information, clearly defeating the purpose of an optical lattice emulator. Here we propose a new method that utilizes deviations from a local fluctuation dissipation theorem to construct a finite temperature phase diagram, for the first time, from local observables accessible by in situ experimental observations. Our approach extends the utility of the fluctuation-dissipation theorem from thermometry to the identification of quantum phases, associated energy scales and the quantum critical region. We test our ideas using state-of-the-art large-scale quantum Monte Carlo simulations of the two-dimensional Bose Hubbard model.Comment: 7 pages; 4 figures; also see supplementary material of 7 pages with 3 figure

    Local 4/5-Law and Energy Dissipation Anomaly in Turbulence

    Full text link
    A strong local form of the ``4/3-law'' in turbulent flow has been proved recently by Duchon and Robert for a triple moment of velocity increments averaged over both a bounded spacetime region and separation vector directions, and for energy dissipation averaged over the same spacetime region. Under precisely stated hypotheses, the two are proved to be proportional, by a constant 4/3, and to appear as a nonnegative defect measure in the local energy balance of singular (distributional) solutions of the incompressible Euler equations. Here we prove that the energy defect measure can be represented also by a triple moment of purely longitudinal velocity increments and by a mixed moment with one longitudinal and two tranverse velocity increments. Thus, we prove that the traditional 4/5- and 4/15-laws of Kolmogorov hold in the same local sense as demonstrated for the 4/3-law by Duchon-Robert.Comment: 14 page

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    Precision Pointing of IBEX-Lo Observations

    Full text link
    Post-launch boresight of the IBEX-Lo instrument onboard the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations and their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within \sim 0.1\degr in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field-of-view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.Comment: 22 pages, 18 figure

    Area distribution of the planar random loop boundary

    Full text link
    We numerically investigate the area statistics of the outer boundary of planar random loops, on the square and triangular lattices. Our Monte Carlo simulations suggest that the underlying limit distribution is the Airy distribution, which was recently found to appear also as area distribution in the model of self-avoiding loops.Comment: 10 pages, 2 figures. v2: minor changes, version as publishe

    Ultrametric spaces of branches on arborescent singularities

    Get PDF
    Let SS be a normal complex analytic surface singularity. We say that SS is arborescent if the dual graph of any resolution of it is a tree. Whenever A,BA,B are distinct branches on SS, we denote by ABA \cdot B their intersection number in the sense of Mumford. If LL is a fixed branch, we define UL(A,B)=(LA)(LB)(AB)1U_L(A,B)= (L \cdot A)(L \cdot B)(A \cdot B)^{-1} when ABA \neq B and UL(A,A)=0U_L(A,A) =0 otherwise. We generalize a theorem of P{\l}oski concerning smooth germs of surfaces, by proving that whenever SS is arborescent, then ULU_L is an ultrametric on the set of branches of SS different from LL. We compute the maximum of ULU_L, which gives an analog of a theorem of Teissier. We show that ULU_L encodes topological information about the structure of the embedded resolutions of any finite set of branches. This generalizes a theorem of Favre and Jonsson concerning the case when both SS and LL are smooth. We generalize also from smooth germs to arbitrary arborescent ones their valuative interpretation of the dual trees of the resolutions of SS. Our proofs are based in an essential way on a determinantal identity of Eisenbud and Neumann.Comment: 37 pages, 16 figures. Compared to the first version on Arxiv, il has a new section 4.3, accompanied by 2 new figures. Several passages were clarified and the typos discovered in the meantime were correcte

    P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data

    Get PDF
    The P-splines of Eilers and Marx (1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; ii) it is possible to flexibly `mix-and-match' the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data

    Scaling prediction for self-avoiding polygons revisited

    Full text link
    We analyse new exact enumeration data for self-avoiding polygons, counted by perimeter and area on the square, triangular and hexagonal lattices. In extending earlier analyses, we focus on the perimeter moments in the vicinity of the bicritical point. We also consider the shape of the critical curve near the bicritical point, which describes the crossover to the branched polymer phase. Our recently conjectured expression for the scaling function of rooted self-avoiding polygons is further supported. For (unrooted) self-avoiding polygons, the analysis reveals the presence of an additional additive term with a new universal amplitude. We conjecture the exact value of this amplitude.Comment: 17 pages, 3 figure

    Opportunities for use of exact statistical equations

    Full text link
    Exact structure function equations are an efficient means of obtaining asymptotic laws such as inertial range laws, as well as all measurable effects of inhomogeneity and anisotropy that cause deviations from such laws. "Exact" means that the equations are obtained from the Navier-Stokes equation or other hydrodynamic equations without any approximation. A pragmatic definition of local homogeneity lies within the exact equations because terms that explicitly depend on the rate of change of measurement location appear within the exact equations; an analogous statement is true for local stationarity. An exact definition of averaging operations is required for the exact equations. Careful derivations of several inertial range laws have appeared in the literature recently in the form of theorems. These theorems give the relationships of the energy dissipation rate to the structure function of acceleration increment multiplied by velocity increment and to both the trace of and the components of the third-order velocity structure functions. These laws are efficiently derived from the exact velocity structure function equations. In some respects, the results obtained herein differ from the previous theorems. The acceleration-velocity structure function is useful for obtaining the energy dissipation rate in particle tracking experiments provided that the effects of inhomogeneity are estimated by means of displacing the measurement location.Comment: accepted by Journal of Turbulenc
    corecore