6,981 research outputs found

    Scaling laws for precision in quantum interferometry and bifurcation landscape of optimal state

    Full text link
    Phase precision in optimal 2-channel quantum interferometry is studied in the limit of large photon number N1N\gg 1, for losses occurring in either one or both channels. For losses in one channel an optimal state undergoes an intriguing sequence of local bifurcations as the losses or the number of photons increase. We further show that fixing the loss paramater determines a scale for quantum metrology -- a crossover value of the photon number NcN_c beyond which the supra-classical precision is progressively lost. For large losses the optimal state also has a different structure from those considered previously.Comment: 4 pages, 3 figures, v3 is modified in response to referee comment

    Preferred Measurements: Optimality and Stability in Quantum Parameter Estimation

    Full text link
    We explore precision in a measurement process incorporating pure probe states, unitary dynamics and complete measurements via a simple formalism. The concept of `information complement' is introduced. It undermines measurement precision and its minimization reveals the system properties at an optimal point. Maximally precise measurements can exhibit independence from the true value of the estimated parameter, but demanding this severely restricts the type of viable probe and dynamics, including the requirement that the Hamiltonian be block-diagonal in a basis of preferred measurements. The curvature of the information complement near a globally optimal point provides a new quantification of measurement stability.Comment: 4 pages, 2 figures, in submission. Substantial Extension and replacement of arXiv:0902.3260v1 in response to Referees' remark

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Adolescent bullying and sleep difficulties

    Get PDF
    This study evaluated whether adolescents who report having been bullied, being bullies, or report both being a bully and being bullied experience more sleep difficulties than children uninvolved in bullying. The study drew upon cognitive theories of insomnia, investigating whether the extent to which young people report worrying about bullying can moderate associations between victimization and sleep difficulties. Participants were 5420 adolescents who completed a self-report questionnaire. Pure Victims (OR = 1.72: 95% CI [1.07 – 2.75]), Pure Bullies (OR = 1.80: 95% CI [1.16 – 2.81]), and Bully-Victims (OR = 2.90: 95% CI [1.17 – 4.92]) were all more likely to experience sleep difficulties when compared to uninvolved young people. The extent to which young people reported worrying about being bullied did not moderate the links between victimization and sleep difficulties. In this way, bullying is clearly related to sleep difficulties among adolescents but the conceptual reach of the cognitive model of insomnia in this domain is questioned

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9

    Frequency of educational computer use as a longitudinal predictor of educational outcomes in young people with specific language impairment

    Get PDF
    Computer use draws on linguistic abilities. Using this medium thus presents challenges for young people with Specific Language Impairment (SLI) and raises questions of whether computer-based tasks are appropriate for them. We consider theoretical arguments predicting impaired performance and negative outcomes relative to peers without SLI versus the possibility of positive gains. We examine the relationship between frequency of computer use (for leisure and educational purposes) and educational achievement; in particular examination performance at the end of compulsory education and level of educational progress two years later. Participants were 49 young people with SLI and 56 typically developing (TD) young people. At around age 17, the two groups did not differ in frequency of educational computer use or leisure computer use. There were no associations between computer use and educational outcomes in the TD group. In the SLI group, after PIQ was controlled for, educational computer use at around 17 years of age contributed substantially to the prediction of educational progress at 19 years. The findings suggest that educational uses of computers are conducive to educational progress in young people with SLI

    Results from the First Science Run of the ZEPLIN-III Dark Matter Search Experiment

    Get PDF
    The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12kg two-phase xenon time projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionisation produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron recoil background signals down to ~10keV nuclear recoil energy. An analysis of 847kg.days of data acquired between February 27th 2008 and May 20th 2008 has excluded a WIMP-nucleon elastic scattering spin-independent cross-section above 8.1x10(-8)pb at 55GeV/c2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.Comment: 12 pages, 17 figure
    corecore