4,795 research outputs found
Statistical eigen-inference from large Wishart matrices
We consider settings where the observations are drawn from a zero-mean
multivariate (real or complex) normal distribution with the population
covariance matrix having eigenvalues of arbitrary multiplicity. We assume that
the eigenvectors of the population covariance matrix are unknown and focus on
inferential procedures that are based on the sample eigenvalues alone (i.e.,
"eigen-inference"). Results found in the literature establish the asymptotic
normality of the fluctuation in the trace of powers of the sample covariance
matrix. We develop concrete algorithms for analytically computing the limiting
quantities and the covariance of the fluctuations. We exploit the asymptotic
normality of the trace of powers of the sample covariance matrix to develop
eigenvalue-based procedures for testing and estimation. Specifically, we
formulate a simple test of hypotheses for the population eigenvalues and a
technique for estimating the population eigenvalues in settings where the
cumulative distribution function of the (nonrandom) population eigenvalues has
a staircase structure. Monte Carlo simulations are used to demonstrate the
superiority of the proposed methodologies over classical techniques and the
robustness of the proposed techniques in high-dimensional, (relatively) small
sample size settings. The improved performance results from the fact that the
proposed inference procedures are "global" (in a sense that we describe) and
exploit "global" information thereby overcoming the inherent biases that
cripple classical inference procedures which are "local" and rely on "local"
information.Comment: Published in at http://dx.doi.org/10.1214/07-AOS583 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference
Random matrix theory is now a big subject with applications in many disciplines of science, engineering and finance. This talk is a survey specifically oriented towards the needs and interests of a computationally inclined audience. We include the important mathematics (free probability) that permit the characterization of a large class of random matrices. We discuss how computational software is transforming this theory into practice by highlighting its use in the context of a stochastic eigen-inference application.Singapore-MIT Alliance (SMA
A mathematical model of a large open fire
A mathematical model capable of predicting the detailed characteristics of large, liquid fuel, axisymmetric, pool fires is described. The predicted characteristics include spatial distributions of flame gas velocity, soot concentration and chemical specie concentrations including carbon monoxide, carbon dioxide, water, unreacted oxygen, unreacted fuel and nitrogen. Comparisons of the predictions with experimental values are also given
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
Random Matrix Theory Analysis of Cross Correlations in Financial Markets
We confirm universal behaviors such as eigenvalue distribution and spacings
predicted by Random Matrix Theory (RMT) for the cross correlation matrix of the
daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been
reported for New York Stock Exchange in previous studies. It is shown that the
random part of the eigenvalue distribution of the cross correlation matrix is
stable even when deterministic correlations are present. Some deviations in the
small eigenvalue statistics outside the bounds of the universality class of RMT
are not completely explained with the deterministic correlations as proposed in
previous studies. We study the effect of randomness on deterministic
correlations and find that randomness causes a repulsion between deterministic
eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of
``level repulsion'' in RMT and explains some deviations from the previous
studies observed in the market data. We also study correlated groups of issues
in these markets and propose a refined method to identify correlated groups
based on RMT. Some characteristic differences between properties of Tokyo Stock
Exchange and New York Stock Exchange are found.Comment: RevTex, 17 pages, 8 figure
Condensation of the roots of real random polynomials on the real axis
We introduce a family of real random polynomials of degree n whose
coefficients a_k are symmetric independent Gaussian variables with variance
= e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly
the mean number of real roots for large n. As \alpha is varied, one finds
three different phases. First, for 0 \leq \alpha \sim
(\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase
where grows algebraically with a continuously varying exponent,
\sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for
\alpha > 2, one finds a third phase where \sim n. This family of real
random polynomials thus exhibits a condensation of their roots on the real line
in the sense that, for large n, a finite fraction of their roots /n are
real. This condensation occurs via a localization of the real roots around the
values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure
Statistics of the Number of Zero Crossings : from Random Polynomials to Diffusion Equation
We consider a class of real random polynomials, indexed by an integer d, of
large degree n and focus on the number of real roots of such random
polynomials. The probability that such polynomials have no real root in the
interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)>0 is the
exponent associated to the decay of the persistence probability for the
diffusion equation with random initial conditions in space dimension d. For n
even, the probability that such polynomials have no root on the full real axis
decays as n^{-2(\theta(d) + \theta(2))}. For d=1, this connection allows for a
physical realization of real random polynomials. We further show that the
probability that such polynomials have exactly k real roots in [0,1] has an
unusual scaling form given by n^{-\tilde \phi(k/\log n)} where \tilde \phi(x)
is a universal large deviation function.Comment: 4 pages, 3 figures. Minor changes. Accepted version in Phys. Rev.
Let
- …
