4,795 research outputs found

    Statistical eigen-inference from large Wishart matrices

    Full text link
    We consider settings where the observations are drawn from a zero-mean multivariate (real or complex) normal distribution with the population covariance matrix having eigenvalues of arbitrary multiplicity. We assume that the eigenvectors of the population covariance matrix are unknown and focus on inferential procedures that are based on the sample eigenvalues alone (i.e., "eigen-inference"). Results found in the literature establish the asymptotic normality of the fluctuation in the trace of powers of the sample covariance matrix. We develop concrete algorithms for analytically computing the limiting quantities and the covariance of the fluctuations. We exploit the asymptotic normality of the trace of powers of the sample covariance matrix to develop eigenvalue-based procedures for testing and estimation. Specifically, we formulate a simple test of hypotheses for the population eigenvalues and a technique for estimating the population eigenvalues in settings where the cumulative distribution function of the (nonrandom) population eigenvalues has a staircase structure. Monte Carlo simulations are used to demonstrate the superiority of the proposed methodologies over classical techniques and the robustness of the proposed techniques in high-dimensional, (relatively) small sample size settings. The improved performance results from the fact that the proposed inference procedures are "global" (in a sense that we describe) and exploit "global" information thereby overcoming the inherent biases that cripple classical inference procedures which are "local" and rely on "local" information.Comment: Published in at http://dx.doi.org/10.1214/07-AOS583 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference

    Get PDF
    Random matrix theory is now a big subject with applications in many disciplines of science, engineering and finance. This talk is a survey specifically oriented towards the needs and interests of a computationally inclined audience. We include the important mathematics (free probability) that permit the characterization of a large class of random matrices. We discuss how computational software is transforming this theory into practice by highlighting its use in the context of a stochastic eigen-inference application.Singapore-MIT Alliance (SMA

    A mathematical model of a large open fire

    Get PDF
    A mathematical model capable of predicting the detailed characteristics of large, liquid fuel, axisymmetric, pool fires is described. The predicted characteristics include spatial distributions of flame gas velocity, soot concentration and chemical specie concentrations including carbon monoxide, carbon dioxide, water, unreacted oxygen, unreacted fuel and nitrogen. Comparisons of the predictions with experimental values are also given

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    Random Matrix Theory Analysis of Cross Correlations in Financial Markets

    Full text link
    We confirm universal behaviors such as eigenvalue distribution and spacings predicted by Random Matrix Theory (RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of RMT are not completely explained with the deterministic correlations as proposed in previous studies. We study the effect of randomness on deterministic correlations and find that randomness causes a repulsion between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of ``level repulsion'' in RMT and explains some deviations from the previous studies observed in the market data. We also study correlated groups of issues in these markets and propose a refined method to identify correlated groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New York Stock Exchange are found.Comment: RevTex, 17 pages, 8 figure

    Condensation of the roots of real random polynomials on the real axis

    Full text link
    We introduce a family of real random polynomials of degree n whose coefficients a_k are symmetric independent Gaussian variables with variance = e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly the mean number of real roots for large n. As \alpha is varied, one finds three different phases. First, for 0 \leq \alpha \sim (\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase where grows algebraically with a continuously varying exponent, \sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for \alpha > 2, one finds a third phase where \sim n. This family of real random polynomials thus exhibits a condensation of their roots on the real line in the sense that, for large n, a finite fraction of their roots /n are real. This condensation occurs via a localization of the real roots around the values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure

    Statistics of the Number of Zero Crossings : from Random Polynomials to Diffusion Equation

    Full text link
    We consider a class of real random polynomials, indexed by an integer d, of large degree n and focus on the number of real roots of such random polynomials. The probability that such polynomials have no real root in the interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)>0 is the exponent associated to the decay of the persistence probability for the diffusion equation with random initial conditions in space dimension d. For n even, the probability that such polynomials have no root on the full real axis decays as n^{-2(\theta(d) + \theta(2))}. For d=1, this connection allows for a physical realization of real random polynomials. We further show that the probability that such polynomials have exactly k real roots in [0,1] has an unusual scaling form given by n^{-\tilde \phi(k/\log n)} where \tilde \phi(x) is a universal large deviation function.Comment: 4 pages, 3 figures. Minor changes. Accepted version in Phys. Rev. Let
    corecore