273 research outputs found

    Light Quark Masses with Nf=2N_f=2 Wilson Fermions

    Get PDF
    We present new data on the mass of the light and strange quarks from SESAM/Tχ\chiL. The results were obtained on lattice-volumes of 163×3216^3\times 32 and 243×4024^3\times 40 points, with the possibility to investigate finite-size effects. Since the SESAM/Tχ\chiL ensembles at β=5.6\beta=5.6 have been complemented by configurations with β=5.5\beta=5.5, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions.Comment: Lattice2001(spectrum), minor correction

    Monte Carlo Quasi-Heatbath by approximate inversion

    Full text link
    When sampling the distribution P(phi) ~ exp(-|A phi|^2), a global heatbath normally proceeds by solving the linear system A phi = eta, where eta is a normal Gaussian vector, exactly. This paper shows how to preserve the distribution P(phi) while solving the linear system with arbitrarily low accuracy. Generalizations are presented.Comment: 10 pages, 1 figure; typos corrected, reference added; version to appear in Phys. Rev.

    QCD on \alpha-Clusters

    Get PDF
    It is shown that the 21264 Alpha processor can reach about 20% sustained efficiency for the inversion of the Wilson-Dirac operator. Since fast ethernet is not sufficient to get balancing between computation and communication on reasonable lattice- and system-sizes, an interconnection using Myrinet is discussed. We find a price/performance ratio comparable with state-of-the-art SIMD-systems for lattice QCD.Comment: LATTICE99(machines), 3 page

    Improving Stochastic Estimator Techniques for Disconnected Diagrams

    Get PDF
    Disconnected diagrams are expected to be sensitive to the inclusion of dynamical fermions. We present a feasibility study for the observation of such effects on the nucleonic matrix elements of the axial vector current, using SESAM full QCD vacuum configurations with Wilson fermions on 163×3216^3\times 32 lattices, at β=5.6\beta =5.6. Starting from the standard methods developed by the Kentucky and Tsukuba groups, we investigate the improvement from various refinements thereof.Comment: One author added. Contribution to Lattice 1997, 3 pages LaTex, to appear in Nucl. Phys. B (Proc. Suppl.

    Constructing Improved Overlap Fermions in QCD

    Get PDF
    We describe an explicit construction of approximate Ginsparg-Wilson fermions for QCD. We use ingredients of perfect action origin, and further elements. The spectrum of the lattice Dirac operator reveals the quality of the approximation. We focus on beta =6 for optimisation. Such fermions are intended to be inserted into the overlap formula. Hence we also test the speed of convergence under polynomial evaluation of the overlap formula.Comment: 5 pages, poster presented at Lattice 2000 (Improvement and Renormalisation

    Finite Density Algorithm in Lattice QCD -- a Canonical Ensemble Approach

    Get PDF
    I will review the finite density algorithm for lattice QCD based on finite chemical potential and summarize the associated difficulties. I will propose a canonical ensemble approach which projects out the finite baryon number sector from the fermion determinant. For this algorithm to work, it requires an efficient method for calculating the fermion determinant and a Monte Carlo algorithm which accommodates unbiased estimate of the probability. I shall report on the progress made along this direction with the Pad\'{e} - Z2_2 estimator of the determinant and its implementation in the newly developed Noisy Monte Carlo algorithm.Comment: Invited talk at Nankai Symposium on Mathematical Physics, Tianjin, Oct. 2001, 18 pages, 3 figures; expanded and references adde

    Bottomonium from NRQCD with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. Compared to a quenched simulation at equivalent lattice spacing we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes and used a lower order action.Comment: Talk presented at LATTICE'97, 3 pages, Late

    Preconditioning of Improved and ``Perfect'' Fermion Actions

    Get PDF
    We construct a locally-lexicographic SSOR preconditioner to accelerate the parallel iterative solution of linear systems of equations for two improved discretizations of lattice fermions: the Sheikholeslami-Wohlert scheme where a non-constant block-diagonal term is added to the Wilson fermion matrix and renormalization group improved actions which incorporate couplings beyond nearest neighbors of the lattice fermion fields. In case (i) we find the block llssor-scheme to be more effective by a factor about 2 than odd-even preconditioned solvers in terms of convergence rates, at beta=6.0. For type (ii) actions, we show that our preconditioner accelerates the iterative solution of a linear system of hypercube fermions by a factor of 3 to 4.Comment: 27 pages, Latex, 17 Figures include

    SSOR Preconditioning of Improved Actions

    Get PDF
    We generalize local lexicographic SSOR preconditioning for the Sheikholeslami-Wohlert improved Wilson fermion action and the truncated perfect free fermion action. In our test implementation we achieve performance gains as known from SSOR preconditioning of the standard Wilson fermion action.Comment: 3 pages, Latex, 3 figures, Talk presented at Lattice'9
    corecore