1,371 research outputs found
The St{\o}rmer problem for an aligned rotator
The effective potential energy of the particles in the field of rotating
uniformly magnetized celestial body is investigated. The axis of rotation
coincides with the axis of the magnetic field. Electromagnetic field of the
body is composed of a dipole magnetic and quadrupole electric fields. The
geometry of the trapping regions is studied as a function of the magnetic field
magnitude and the rotation speed of the body. Examples of the potential energy
topology for different values of these parameters are given. The main
difference from the classical St{\o}rmer problem is that the single toroidal
trapping region predicted by St{\o}rmer is divided into equatorial and
off-equatorial trapping regions. Applicability of the idealized model of a
rotating uniformly magnetized sphere with a vacuum magnetosphere to real
celestial bodies is discussed.Comment: This article has been accepted for publication in Monthly Notices of
the Royal Astronomical Society Published by Oxford University Pres
Quasilocal Conservation Laws: Why We Need Them
We argue that conservation laws based on the local matter-only
stress-energy-momentum tensor (characterized by energy and momentum per unit
volume) cannot adequately explain a wide variety of even very simple physical
phenomena because they fail to properly account for gravitational effects. We
construct a general quasi}local conservation law based on the Brown and York
total (matter plus gravity) stress-energy-momentum tensor (characterized by
energy and momentum per unit area), and argue that it does properly account for
gravitational effects. As a simple example of the explanatory power of this
quasilocal approach, consider that, when we accelerate toward a freely-floating
massive object, the kinetic energy of that object increases (relative to our
frame). But how, exactly, does the object acquire this increasing kinetic
energy? Using the energy form of our quasilocal conservation law, we can see
precisely the actual mechanism by which the kinetic energy increases: It is due
to a bona fide gravitational energy flux that is exactly analogous to the
electromagnetic Poynting flux, and involves the general relativistic effect of
frame dragging caused by the object's motion relative to us.Comment: 20 pages, 1 figur
A New Approach to Black Hole Microstates
If one encodes the gravitational degrees of freedom in an orthonormal frame
field there is a very natural first order action one can write down (which in
four dimensions is known as the Goldberg action). In this essay we will show
that this action contains a boundary action for certain microscopic degrees of
freedom living at the horizon of a black hole, and argue that these degrees of
freedom hold great promise for explaining the microstates responsible for black
hole entropy, in any number of spacetime dimensions. This approach faces many
interesting challenges, both technical and conceptual.Comment: 6 pages, 0 figures, LaTeX; submitted to Mod. Phys. Lett. A.; this
essay received "honorable mention" from the Gravity Research Foundation, 199
Do we know the mass of a black hole? Mass of some cosmological black hole models
Using a cosmological black hole model proposed recently, we have calculated
the quasi-local mass of a collapsing structure within a cosmological setting
due to different definitions put forward in the last decades to see how similar
or different they are. It has been shown that the mass within the horizon
follows the familiar Brown-York behavior. It increases, however, outside the
horizon again after a short decrease, in contrast to the Schwarzschild case.
Further away, near the void, outside the collapsed region, and where the
density reaches the background minimum, all the mass definitions roughly
coincide. They differ, however, substantially far from it. Generically, we are
faced with three different Brown-York mass maxima: near the horizon, around the
void between the overdensity region and the background, and another at
cosmological distances corresponding to the cosmological horizon. While the
latter two maxima are always present, the horizon mass maxima is absent before
the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity
and Gravitatio
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
Angular momentum and an invariant quasilocal energy in general relativity
Owing to its transformation property under local boosts, the Brown-York
quasilocal energy surface density is the analogue of E in the special
relativity formula: E^2-p^2=m^2. In this paper I will motivate the general
relativistic version of this formula, and thereby arrive at a geometrically
natural definition of an `invariant quasilocal energy', or IQE. In analogy with
the invariant mass m, the IQE is invariant under local boosts of the set of
observers on a given two-surface S in spacetime. A reference energy subtraction
procedure is required, but in contrast to the Brown-York procedure, S is
isometrically embedded into a four-dimensional reference spacetime. This
virtually eliminates the embeddability problem inherent in the use of a
three-dimensional reference space, but introduces a new one: such embeddings
are not unique, leading to an ambiguity in the reference IQE. However, in this
codimension-two setting there are two curvatures associated with S: the
curvatures of its tangent and normal bundles. Taking advantage of this fact, I
will suggest a possible way to resolve the embedding ambiguity, which at the
same time will be seen to incorporate angular momentum into the energy at the
quasilocal level. I will analyze the IQE in the following cases: both the
spatial and future null infinity limits of a large sphere in asymptotically
flat spacetimes; a small sphere shrinking toward a point along either spatial
or null directions; and finally, in asymptotically anti-de Sitter spacetimes.
The last case reveals a striking similarity between the reference IQE and a
certain counterterm energy recently proposed in the context of the conjectured
AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results,
submitted to Physical Review
Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes
The cross section of hard semi-exclusive reactions for fixed
missing energy and momentum is calculated within the eikonal approximation.
Relativistic dynamics and kinematics of high energy processes are unambiguously
accounted for by using the analysis of appropriate Feynman diagrams. A
significant dependence of the final state interactions on the missing energy is
found, which is important for interpretation of forthcoming color transparency
experiments. A new, more stringent kinematic restriction on the region where
the contribution of short-range nucleon correlations is enhanced in
semi-exclusive knock-out processes is derived. It is also demonstrated that the
use of light-cone variables leads to a considerable simplification of the
description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and
psfig.sty. Revisied version to appear in Phys. Rev.
Selected Topics in High Energy Semi-Exclusive Electro-Nuclear Reactions
We review the present status of the theory of high energy reactions with
semi-exclusive nucleon electro-production from nuclear targets. We demonstrate
how the increase of transferred energies in these reactions opens a complete
new window in studying the microscopic nuclear structure at small distances.
The simplifications in theoretical descriptions associated with the increase of
the energies are discussed. The theoretical framework for calculation of high
energy nuclear reactions based on the effective Feynman diagram rules is
described in details. The result of this approach is the generalized eikonal
approximation (GEA), which is reduced to Glauber approximation when nucleon
recoil is neglected. The method of GEA is demonstrated in the calculation of
high energy electro-disintegration of the deuteron and A=3 targets.
Subsequently we generalize the obtained formulae for A>3 nuclei. The relation
of GEA to the Glauber theory is analyzed. Then based on the GEA framework we
discuss some of the phenomena which can be studied in exclusive reactions,
these are: nuclear transparency and short-range correlations in nuclei. We
illustrate how light-cone dynamics of high-energy scattering emerge naturally
in high energy electro-nuclear reactions.Comment: LaTex file with 51 pages and 23 eps figure
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
- …
