11,494 research outputs found

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Degenerate Fermi Gas of 87^{87}Sr

    Get PDF
    We report quantum degeneracy in a gas of ultra-cold fermionic 87^{87}Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5\,s, we obtain samples well into the degenerate regime with T/TF=0.26.06+.05T/T_F=0.26^{+.05}_{-.06}. The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/TF0.5T/T_F \sim 0.5.Comment: 4 pages, 3 figure

    Inelastic and elastic collision rates for triplet states of ultracold strontium

    Get PDF
    We report measurement of the inelastic and elastic collision rates for ^{88}Sr atoms in the (5s5p)^3P_0 state in a crossed-beam optical dipole trap. This is the first measurement of ultracold collision properties of a ^3P_0 level in an alkaline-earth atom or atom with similar electronic structure. Since the (5s5p)^3P_0 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p){^3P_2} state.Comment: 4 pages 5 figure

    Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment

    Get PDF
    We study the photo-desorption occurring in H2_2O:CO:NH3_3 ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C3_3H3_3NO, C4_4H5_5O, C4_4H7_7N), supporting the enrichment of the gas phase. At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield. We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photon1^{-1} in the range 10151020\sim 10^{15} - 10^{20}~absorbed photons cm2^{-2}. We apply these findings to a protoplanetary disk model irradiated by a central T~Tauri star

    A compactness theorem for scalar-flat metrics on manifolds with boundary

    Full text link
    Let (M,g) be a compact Riemannian manifold with boundary. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. We prove that this set is compact for dimensions greater than or equal to 7 under the generic condition that the trace-free 2nd fundamental form of the boundary is nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential Equation

    Ag-Ti(C,N)-based coatings for biomedical applications : influence of silver content on the structural properties

    Get PDF
    Ag–TiCN coatings were deposited by dc reactive magnetron sputtering and their structural and morphological properties were evaluated. Compositional analysis showed the existence of Ag–TiCN coatings with different Ag/Ti atomic ratios (ranging from 0 to 1.49). The structural and morphological properties are well correlated with the evolution of Ag/Ti atomic ratio. For the samples with low Ag/Ti atomic ratio (below 0.20) the coatings crystallize in a B1-NaCl crystal structure typical of TiC0.3N0.7. The increase in Ag/Ti atomic ratio promoted the formation of Ag crystalline phases as well as amorphous CNx phases detected in both x-ray photoelectron spectroscopy and Raman spectroscopy analysis. Simultaneously to the formation of Ag crystalline phases and amorphous carbon-based phases, a decrease in TiC0.3N0.7 grain size was observed as well as the densification of coatings.Spanish Ministry of Science and InnovationFundação para a Ciência e Tecnologia (FCT)CRUP InstitutionMCIN
    corecore