60 research outputs found
Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?
International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity
Disentangling the visual, motor and representational effects of vestibular input
The body midline provides a basic reference for egocentric representation of external space. Clinical observations have suggested that vestibular information underpins egocentric representations. Here we aimed to clarify whether and how vestibular inputs contribute to egocentric representation in healthy volunteers. In a psychophysical task, participants were asked to judge whether visual stimuli were located to the left or to the right of their body midline. Artificial vestibular stimulation was applied to stimulate the vestibular organs. We found that artificial stimulation of the vestibular system biased body midline perception. Importantly, no effect was found on motor effector selection. We also ruled out additional explanations based on allocentric visual representations and on potential indirect effects caused by vestibular-driven movements of the eyes, head and body. Taken together our data suggest that vestibular information contributes to computation of egocentric representations by affecting the internal representation of the body midline
Somatosensory modulation of perceptual vestibular detection
Vestibular-multisensory interactions are essential for self-motion, navigation and postural stability. Despite evidence suggesting shared brain areas between vestibular and somatosensory inputs, no study has yet investigated whether somatosensory information influences vestibular perception. Here, we used signal detection methods to identify whether somatosensory stimulation might interact with vestibular events in a vestibular detection task. Participants were instructed to detect near-threshold vestibular roll-rotation sensations delivered by galvanic vestibular stimulation in one-half of experimental trials. A vibrotactile signal occurred to the index fingers of both hands in half of the trials, independent of vestibular signals. We found that vibrotactile somatosensory stimulation decreased perceptual vestibular sensitivity. The results are compatible with a gain regulation mechanism between vestibular and somatosensory modalities
Coding potential of the products of alternative splicing in human
Background: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. Results: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. Conclusions: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity
FRASS: the web-server for RNA structural comparison
<p>Abstract</p> <p>Background</p> <p>The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules.</p> <p>Results</p> <p>The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method.</p> <p>Conclusions</p> <p>The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases.</p
CYP17, GSTP1, PON1 and GLO1 gene polymorphisms as risk factors for breast cancer: an Italian case-control study
<p>Abstract</p> <p>Background</p> <p>Estrogens, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression. Therefore, polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway and in the metabolic activation of pro-carcinogens to genotoxic intermediates, such as cytochrome P450C17α (CYP17), endogenous free-radical scavenging systems, such as glutathione S-transferase (GSTP1) and paraoxonase 1 (PON1), and anti-glycation defenses, such as glyoxalase I (GLO1), could influence individual susceptibility to BC. In the present case-control study, we investigated the possible association of CYP17 A1A2, GSTP1 ILE105VAL, PON1 Q192R or L55M, and GLO1 A111E polymorphisms with the risk of BC.</p> <p>Methods</p> <p>The above-said five polymorphisms were characterized in 547 patients with BC and in 544 healthy controls by PCR/RFLP methods, using DNA from whole blood. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for BC.</p> <p>Results</p> <p>CYP17 polymorphism had no major effect in BC proneness in the overall population. However, it modified the risk of BC for certain subgroups of patients. In particular, among premenopausal women with the A1A1 genotype, a protective effect of later age at menarche and parity was observed. As to GSTP1 and PON1 192 polymorphisms, the mutant Val and R alleles, respectively, were associated with a decreased risk of developing BC, while polymorphisms in PON1 55 and GLO1 were associated with an increased risk of this neoplasia. However, these findings, while nominally significant, did not withstand correction for multiple testing.</p> <p>Conclusion</p> <p>Genetic polymorphisms in biotransformation enzymes CYP17, GSTP1, PON1 and GLO1 could be associated with the risk for BC. Although significances did not withstand correction for multiple testing, the results of our exploratory analysis warrant further studies on the above mentioned genes and BC.</p
The effects of instrumental action on perceptual hand maps
Perceiving the external spatial location of body parts using position sense requires that immediate proprioceptive afferent signals be integrated with information about body size and shape. Longo and Haggard (Proc Natl Acad Sci USA 107:11727–11732, 2010) developed a method to measure perceptual hand maps reflecting this metric information about body size and shape. In this paradigm, participants indicate the perceived location of landmarks on their occluded hand by pointing with a long baton held in their other hand. By comparing the relative location of judgments of different hand landmarks, perceptual hand maps can be constructed and compared to actual hand structure. The maps show large and highly stereotyped distortions. Here, I investigated the potential effect of biases related to active motor control of the hand doing the pointing in these distortions. Participants localized the fingertip and knuckle of each finger on their occluded left hand either by actively pointing with a baton held in their right hand (pointing condition) or by giving verbal commands to an experimenter on how to move the baton (verbal condition). Similar distortions were clearly apparent in both conditions, suggesting that they are not an artifact of motor control biases related to the pointing hand
Alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV)
Appropriate flow seeding is particularly critical with in the particle image velocimetry (PIV) technique that indirectly measures the displacement from the particle velocity instead of fluid velocity. Particles that follow the flow accordingly and scatter enough light must be used in order to obtain accurate velocity field of the flow. Therefore, particles should be as small as possible in order to ensure good tracking of the fluid motion and they should not be too small, since they will not scatter enough light. The microparticles can be obtained from approximately 20 nm to around 50 ?m in a controlled manner with ability increasing their light scattering behavior by fluorescein imbedding so that they gain the light scattering property. Alginate microparticles as flow seeding fulfill all the requirements that are recommended for the velocity measurements in PIV. These spherical microparticles offer the advantage of being environmentally friendly, excellent seeding properties and very simple production ability. They can be obtained as small as possible while increasing its scattering behavior by adding fluorescein into them. Additionally, they can be perfectly used as flow seeding in gas and several liquid flows with matching densities
A Case Report of Fatal Mucormycosis in a 30-Year-Old Patient with Autoimmune Polyendocrine Syndrome Type 1
- …
