802 research outputs found
Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off
Transparent conducting oxides have recently gained great attention as
CMOS-compatible materials for applications in nanophotonics due to their low
optical loss, metal-like behavior, versatile/tailorable optical properties, and
established fabrication procedures. In particular, aluminum doped zinc oxide
(AZO) is very attractive because its dielectric permittivity can be engineered
over a broad range in the near infrared and infrared. However, despite all
these beneficial features, the slow (> 100 ps) electron-hole recombination time
typical of these compounds still represents a fundamental limitation impeding
ultrafast optical modulation. Here we report the first epsilon-near-zero AZO
thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation
and recombination time below 1 ps) and an outstanding reflectance modulation up
to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength
of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the
result of a low temperature fabrication procedure promoting oxygen vacancies
and an ultra-high carrier concentration. As a proof-of-concept, an all-optical
AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and
operating at THz frequencies is numerically demonstrated. Our results overcome
the traditional "modulation depth vs. speed" trade-off by at least an order of
magnitude, placing AZO among the most promising compounds for
tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl
Solar electric propulsion system tests
Design and performance of solar-powered electric propulsion system for interplanetary space exploratio
Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions
In cosmological first-order phase transitions, the progress of true-vacuum
bubbles is expected to be significantly retarded by the interaction between the
bubble wall and the hot plasma. We examine the evolution and collision of
slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase
oscillations, predicted and observed in systems with a local symmetry and with
a global symmetry where the bubbles move at speeds less than the speed of
light, do not occur inside collisions of slow-moving local-symmetry bubbles. We
observe almost instantaneous phase equilibration which would lead to a decrease
in the expected initial defect density, or possibly prevent defects from
forming at all. We illustrate our findings with an example of defect formation
suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the
formation of `extra defects', and in the presence of plasma conductivity may
lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference
added. To appear in Phys. Rev.
MAESTRI Toolkit for Industrial Symbiosis: overview, lessons learnt and implications
This paper presents a structured approach to support the development of self-organized industrial symbiosis, the Toolkit for Industrial Symbiosis. Developed within MAESTRI project, it provides a set of tools and methods to help companies gain value from wasted resources and contributes to MAESTRI goal of advancing the sustainability of European manufacturing and process industry. A participatory approach was taken for its development. The ultimate objective of this work is to encourage companies to change their attitude and consider waste as a resource and potential source for value creation
Crossing the cosmological constant line in a dilatonic brane-world model with and without curvature corrections
We construct a new brane-world model composed of a bulk -with a dilatonic
field-, plus a brane -with brane tension coupled to the dilaton-, cold dark
matter and an induced gravity term. It is possible to show that depending on
the nature of the coupling between the brane tension and the dilaton this model
can describe the late-time acceleration of the brane expansion (for the normal
branch) as it moves within the bulk. The acceleration is produced together with
a mimicry of the crossing of the cosmological constant line (w=-1) on the
brane, although this crossing of the phantom divide is obtained without
invoking any phantom matter neither on the brane nor in the bulk. The role of
dark energy is played by the brane tension, which reaches a maximum positive
value along the cosmological expansion of the brane. It is precisely at that
maximum that the crossing of the phantom divide takes place. We also show that
these results remain valid when the induced gravity term on the brane is
switched off.Comment: 12 pages, 2 figures, RevTeX
Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models
The periodic bounce configurations responsible for quantum tunneling are
obtained explicitly and are extended to the finite energy case for
minisuperspace models of the Universe. As a common feature of the tunneling
models at finite energy considered here we observe that the period of the
bounce increases with energy monotonically. The periodic bounces do not have
bifurcations and make no contribution to the nucleation rate except the one
with zero energy. The sharp first order phase transition from quantum tunneling
to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include
Gauge-independent renormalization in the 2HDM
We present a consistent renormalization scheme for the CP-conserving
Two-Higgs-Doublet Model based on renormalization of the mixing
angles and the soft--symmetry-breaking scale in the Higgs sector.
This scheme requires to treat tadpoles fully consistently in all steps of the
calculation in order to provide gauge-independent -matrix elements. We show
how bare physical parameters have to be defined and verify the gauge
independence of physical quantities by explicit calculations in a general
-gauge. The procedure is straightforward and applicable to other
models with extended Higgs sectors. In contrast to the proposed scheme, the
renormalization of the mixing angles combined with popular
on-shell renormalization schemes gives rise to gauge-dependent results already
at the one-loop level. We present explicit results for electroweak NLO
corrections to selected processes in the appropriately renormalized
Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23)
correcte
MSSM Higgs sector CP violation at photon colliders: Revisited
We present a comprehensive analysis on the MSSM Higgs sector CP violation at
photon colliders including the chargino contributions as well as the
contributions of other charged particles. The chargino loop contributions can
be important for the would-be CP odd Higgs production at photon colliders.
Polarization asymmetries are indispensable in determining the CP properties of
neutral Higgs bosons.Comment: 24 pages, 40 figure
Enhanced nonlinear refractive index in ε-near-zero materials
New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n2) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.Publisher PDFPeer reviewe
Investigation of cluster states in 13b using the 9li-α resonant elastic scattering
The excitation function of the resonant reaction 4He(9Li,α) was measured with the aim of investigating the compound nucleus 13B. These measurements were performed in inverse kinematics at center-of-mass scattering angles close to 180° by using a thick 4He gas target and a 9Li beam. The 13B excitation energy region explored was 14-20 MeV where 9Li-αurations of 13B are predicted by Antysimmetrised Molecular Dynamics calculations. The measured excitation function at θcm= 180°s different clear structures in a 13B excitation energy region which was experimentally unknown
- …
