1,786 research outputs found
Web ontology representation and reasoning via fragments of set theory
In this paper we use results from Computable Set Theory as a means to
represent and reason about description logics and rule languages for the
semantic web.
Specifically, we introduce the description logic \mathcal{DL}\langle
4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs
on the left-hand/right-hand side of inclusion axioms, role chain axioms, and
datatypes--which turns out to be quite expressive if compared with
\mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology
Language OWL. Then we show that the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by
reducing it, through a suitable translation process, to the satisfiability
problem of the stratified fragment of set theory, involving variables
of four sorts and a restricted form of quantification. We prove also that,
under suitable not very restrictive constraints, the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is
\textbf{NP}-complete. Finally, we provide a -translation of rules
belonging to the Semantic Web Rule Language (SWRL)
Comparative fragility methods for seismic assessment of masonry buildings located in Muccia (Italy)
The current paper focuses on a sector of the historic centre of Muccia, in the district of Macerata (Italy), affected by the seismic sequence that involved Central Italy in 2016. The main goal is comparison, in terms of fragility curves, among two vulnerability assessment methodologies (empirical and mechanical). The study area has been structurally and typologically identified according to the Building Typology Matrix (BTM). Physical vulnerability analysis of the urban-sector was performed through application of an index-based method, specifically for masonry building aggregates. An isolated masonry building, damaged after the seismic sequences, has been selected as a case study. For the assessed building, empirical fragility curves are presented according to Guagenti & Petrini’s correlation law. Furthermore, a numerical model has been set up by using the macro-element approach, which has allowed to perform non-linear static analyses. Mechanical properties of masonry were defined according to the New Technical Codes for Constructions (NTC18), assuming a limited knowledge level (LC1). Refined mechanical fragility functions have been derived and compared to the empirical ones.
Analysis results have shown that the empirical method tends to overestimate by 5% and 10% the expected damage for slight and moderate thresholds. For PGA values greater than 0,3 g the damage levels decreased by 30% and 20%, with reference to the near collapse and collapse conditions, respectively
Damage scenario-based approach and retrofitting strategies for seismic risk mitigation: an application to the historical Centre of Sant’Antimo (Italy)
Seismic vulnerability and damage of Italian historical centres: a case study in the Campania region
The preservation of masonry buildings typical of Italian historical centres represents a very pressing dilemma founded on recovery need of the urban fabric original character. In the paper, based on a methodology developed by some of the Authors on building aggregates, the seismic vulnerability estimation of some masonry compounds in the heart of the town of San Potito Sannitico (Caserta, Italy) is presented and compared to the results achieved from applying the basic literature method for isolated constructions. Finally, the damage scenario of inspected buildings has been shown by highlighting clearly the influence of different positions of structural units on the damages masonry aggregates suffer under different grade earthquakes, leading to individuate the most vulnerable buildings
Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock
Large parallel ( 100 mV/m) and perpendicular ( 600 mV/m) electric
fields were measured in the Earth's bow shock by the vector electric field
experiment on the Polar satellite. These are the first reported direct
measurements of parallel electric fields in a collisionless shock. These fields
exist on spatial scales comparable to or less than the electron skin depth (a
few kilometers) and correspond to magnetic field-aligned potentials of tens of
volts and perpendicular potentials up to a kilovolt. The perpendicular fields
are amongst the largest ever measured in space, with energy densities of
of order 10%. The measured parallel electric field
implies that the electrons can be demagnetized, which may result in stochastic
(rather than coherent) electron heating
Effects of three-body interactions on the structure and thermodynamics of liquid krypton
Large-scale molecular dynamics simulations are performed to predict the
structural and thermodynamic properties of liquid krypton using a potential
energy function based on the two-body potential of Aziz and Slaman plus the
triple-dipole Axilrod-Teller (AT) potential. By varying the strength of the AT
potential we study the influence of three-body contribution beyond the
triple-dipole dispersion. It is seen that the AT potential gives an overall
good description of liquid Kr, though other contributions such as higher order
three-body dispersion and exchange terms cannot be ignored.Comment: 11 pages, 3 figures, LaTeX, to appear in J. Chem. Phy
The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death
Three-body interactions in colloidal systems
We present the first direct measurement of three-body interactions in a
colloidal system comprised of three charged colloidal particles. Two of the
particles have been confined by means of a scanned laser tweezers to a
line-shaped optical trap where they diffused due to thermal fluctuations. Upon
the approach of a third particle, attractive three-body interactions have been
observed. The results are in qualitative agreement with additionally performed
nonlinear Poissson-Boltzmann calculations, which also allow us to investigate
the microionic density distributions in the neighborhood of the interacting
colloidal particles
Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death.
Phthalates, phthalic acid esters, are widely used as plasticizers to produce polymeric materials in industrial production of plastics and daily consumable products. Animal studies have shown that di(2-ethylhexyl)phthalate (DEHP) may cause toxic effects in the rat brain. In the present study, chronic exposure to DEHP (0.1–100 μM) caused dose-dependent cell death via the activation of caspase-3 in neuroblastoma cells. Intriguingly, this harmful effect was prevented by the pan-histone deacetylase (HDAC) inhibitor trichostatin A, by the class II HDAC inhibitor MC-1568, but not by the class I HDAC inhibitor MS-275. Furthermore, DEHP reduced specificity protein 3 (Sp3) gene expression, but not Sp3 mRNA, after 24 and 48 h exposures. However, Sp3 protein reduction was prevented by pre-treatment with MC-1568, suggesting the involvement of class II HDACs in causing this effect. Then, we investigated the possible relationship between DEHP-induced neuronal death and the post-translational mechanisms responsible for the down-regulation of Sp3. Interestingly, DEHP-induced Sp3 reduction was associated to its deacetylation and polyubiquitination. Co-immunoprecipitation studies showed that Sp3 physically interacted with HDAC4 after DEHP exposure, while HDAC4 inhibition by antisense oligodeoxynucleotide reverted the DEHP-induced degradation of Sp3. Notably, Sp3 overexpression was able to counteract the detrimental effect induced by DEHP. Taken together, these results suggest that DEHP exerts its toxic effect by inducing deacetylation of Sp3 via HDAC4, and afterwards, Sp3-polyubiquitination
- …
