406 research outputs found
Properties of active galactic star-forming regions probed by imaging spectroscopy with the Fourier transform spectrometer (FTS) onboard AKARI
We investigate the structure of the interstellar medium (ISM) and identify
the location of possible embedded excitation sources from far-infrared (FIR)
line and mid-infrared continuum emission maps. We carried out imaging
spectroscopic observations of four giant Galactic star-forming regions with the
Fourier Transform Spectrometer (FTS) onboard AKARI. We obtained [OIII] 88
micron and [CII] 158 micron line intensity maps of all the regions:
G3.270-0.101, G333.6-0.2, NGC3603, and M17. For G3.270-0.101, we obtained
high-spatial-resolution [OIII] 88 micron line-emission maps and a FIR continuum
map for the first time, which imply that [OIII] 88 micron emission identifies
the excitation sources more clearly than the radio continuum emission. In
G333.6-0.2, we found a local [OIII] 88 micron emission peak, which is
indicative of an excitation source. This is supported by the 18 micron
continuum emission, which is considered to trace the hot dust distribution. For
all regions, the [CII] 158 micron emission is distributed widely as suggested
by previous observations of star-forming regions. We conclude that [OIII] 88
micron emission traces the excitation sources more accurately than the radio
continuum emission, especially where there is a high density and/or column
density gradient. The FIR spectroscopy provides a promising means of
understanding the nature of star-forming regions.Comment: 14 pages with 15 figures, accepted for publication in Astronomy and
Astrophysic
The star-forming content of the W3 giant molecular cloud
We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud
and star-forming region in the 850-micron continuum, using the SCUBA bolometer
array on the James Clerk Maxwell Telescope. A complete sample of 316 dense
clumps was detected with a mass range from around 13 to 2500 Msun. Part of the
W3 GMC is subject to an interaction with the HII region and fast stellar winds
generated by the nearby W4 OB association. We find that the fraction of total
gas mass in dense, 850-micron traced structures is significantly altered by
this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37%
in the feedback-affected region. The mass distribution in the detected clump
sample depends somewhat on assumptions of dust temperature and is not a simple,
single power law but contains significant structure at intermediate masses.
This structure is likely to be due to crowding of sources near or below the
spatial resolution of the observations. There is little evidence of any
difference between the index of the high-mass end of the clump mass function in
the compressed region and in the unaffected cloud. The consequences of these
results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on
request). Accepted for publication in Monthly Notices of the Royal
Astronomical Society (Main Journal
Direct detection of a flared disk around a young massive star HD200775 and its 10 to 1000AU scale properties
We made mid-infrared observations of the 10Msun Herbig Be star HD200775 with
the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru
Telescope. We discovered diffuse emission of an elliptical shape extended in
the north-south direction inabout 1000AU radius around unresolved excess
emission. The diffuse emission is perpendicular to the cavity wall formed by
the past outflow activity and is parallel to the projected major axis of the
central close binary orbit. The centers of the ellipse contours of the diffuse
emission are shifted from the stellar position and the amount of the shift
increases as the contour brightness level decreases. The diffuse emission is
well explained in all of geometry, size, and configuration by an inclined
flared disk where only its surface emits the mid-infrared photons. Our results
give the first well-resolved infrared disk images around a massive star and
strongly support that HD200775 is formed through the disk accretion. The disk
survives the main accretion phase and shows a structure similar to that around
lower-mass stars with 'disk atmosphere'. At the same time, the disk also shows
properties characteristic to massive stars such as photoevaporation traced by
the 3.4mm free-free emission and unusual silicate emission with a peak at
9.2micron, which is shorter than that of many astronomical objects. It provides
a good place to compare the disk properties between massive and lower-mass
stars.Comment: 18 pages, 8 figures, accepted by The Astrophysical Journa
Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected material from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for >10 d is explained by 0.03 M⊙ of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ∼0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that the mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe
MALT-45: a 7 mm survey of the southern Galaxy - I. Techniques and spectral line data
We present the first results from the MALT-45 (Millimetre Astronomer's Legacy Team-45 GHz) Galactic Plane survey. We have observed 5 square degrees (l = 330°–335°, b = ±0 ∘ . 5) for spectral lines in the 7 mm band (42–44 and 48–49 GHz), including CS (1–0), class I CH3OH masers in the 7(0,7)–6(1,6) A+ transition and SiO (1–0) v = 0, 1, 2, 3. MALT-45 is the first unbiased, large-scale, sensitive spectral line survey in this frequency range. In this paper, we present data from the survey as well as a few intriguing results; rigorous analyses of these science cases are reserved for future publications. Across the survey region, we detected 77 class I CH3OH masers, of which 58 are new detections, along with many sites of thermal and maser SiO emission and thermal CS. We found that 35 class I CH3OH masers were associated with the published locations of class II CH3OH, H2O and OH masers but 42 have no known masers within 60 arcsec. We compared the MALT-45 CS with NH3 (1,1) to reveal regions of CS depletion and high opacity, as well as evolved star-forming regions with a high ratio of CS to NH3. All SiO masers are new detections, and appear to be associated with evolved stars from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Generally, within SiO regions of multiple vibrational modes, the intensity decreases as v = 1, 2, 3, but there are a few exceptions where v = 2 is stronger than v = 1
Information retrieval and text mining technologies for chemistry
Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European
Community’s Horizon 2020 Program (project reference:
654021 - OpenMinted). M.K. additionally acknowledges the
Encomienda MINETAD-CNIO as part of the Plan for the
Advancement of Language Technology. O.R. and J.O. thank
the Foundation for Applied Medical Research (FIMA),
University of Navarra (Pamplona, Spain). This work was
partially funded by Consellería
de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic
funding of UID/BIO/04469/2013 unit and COMPETE 2020
(POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi
for useful feedback and discussions during the preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ^13C–CO2 and δ^18O–CO2 increased, while δ2H–H2Ov and δ^18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.journal articl
Saturn's Seasonal Variability from Four Decades of Ground-Based Mid-Infrared Observations
A multi-decade record of ground-based mid-infrared (7-25 m) images of
Saturn is used to explore seasonal and non-seasonal variability in thermal
emission over more than a Saturnian year (1984-2022). Thermal emission measured
by 3-m and 8-m-class observatories compares favourably with synthetic images
based on both Cassini-derived temperature records and the predictions of
radiative climate models. 8-m class facilities are capable of resolving thermal
contrasts on the scale of Saturn's belts, zones, polar hexagon, and polar
cyclones, superimposed onto large-scale seasonal asymmetries. Seasonal changes
in brightness temperatures of K in the stratosphere and K in
the upper troposphere are observed, as the northern and southern polar
stratospheric vortices (NPSV and SPSV) form in spring and dissipate in autumn.
The timings of the first appearance of the warm polar vortices is successfully
reproduced by radiative climate models, confirming them to be radiative
phenomena, albeit entrained within sharp boundaries influenced by dynamics.
Axisymmetric thermal bands (4-5 per hemisphere) display temperature gradients
that are strongly correlated with Saturn's zonal winds, indicating winds that
decay in strength with altitude, and implying meridional circulation cells
forming the system of cool zones and warm belts. Saturn's thermal structure is
largely repeatable from year to year (via comparison of infrared images in 1989
and 2018), with the exception of low-latitudes. Here we find evidence of
inter-annual variations because the equatorial banding at 7.9 m is
inconsistent with a -year period for Saturn's equatorial stratospheric
oscillation, i.e., it is not strictly semi-annual. Finally, observations
between 2017-2022 extend the legacy of the Cassini mission, revealing the
continued warming of the NPSV during northern summer. [Abr.]Comment: 25 pages, 15 figures, accepted for publication in Icaru
- …
