86 research outputs found

    Assessment of wastewater-irrigated soil containing heavy metals and establishment of specific biomarkers

    Get PDF
    Irrigation with treated wastewater (TWW) is a vital alternative for arid and semi-arid lands but it poses pollution-risk to soil, vegetation and groundwater. Therefore, in the present study, in vitro bioassays were used to evaluate the adverse effects of TWW and irrigated-soil extract sample, on mammalian cells, with respect to heavy metal—Ni, Cd, Pb, Fe, Al-content. The heat shock protein (HSP) 47, E-screen, and transepithelial electrical resistance (TEER) assays served to investigate the stress response of treated-HSP47-transfected Chinese hamster ovary (CHO) cells, the estrogenic activity of the samples in MCF-7 breast cancer cells, and the barrier function (BF) of Caco-2 cells. Furthermore, proteomics analyses were performed to shed light on involved mechanisms and to establish pollution biomarkers. Results showed that the TWW elicited a stress response on HSP cells from 0.1% concentration while soil extract samples exhibited a stress at 1%. TWW induced an estrogenic activity at 10%; up-regulating cell proliferation and tumor-related proteins. Soil extract triggered the enhanced expression of HSP70 family proteins as survival mechanisms against their cytotoxicity toward MCF-7 cells. Moreover, depending on the concentration, 1% of soil extract from 20 cm depth (T20) resulted in a disruption of BF in Caco-2 cells involving cell metabolism, protein synthesis and tumor marker proteins, whereas, 5% of T20 induced the expression of BF-related proteins associated to heat shock, oxidative stress, cell proliferation and glycolytic metabolic pathway. These biological techniques were found to be extremely useful to evaluate the impact of wastewater reuse and to establish specific biomarkers that are common proteins for humans, other mammals and plants. Future studies should focus on exposure quantifications

    Tetrahydrouridine Inhibits Cell Proliferation through Cell Cycle Regulation Regardless of Cytidine Deaminase Expression Levels

    Get PDF
    Tetrahydrouridine (THU) is a well characterized and potent inhibitor of cytidine deaminase (CDA). Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299) exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells

    The sanitation value chain: its concept and new research collaboration project

    No full text

    Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process

    Get PDF
    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic urine, however, almost all sulfonamide antibiotic was also incorporated, which is unfavorable from a safety aspect if the methylene urea is to be used as fertilizer. Conversely, RAOC could remove sulfonamide antibiotic without consuming urea. It was also confirmed that the methylene urea could be synthesized from synthetic urine treated by RAOC. Thus, we concluded that RAOC should be inserted prior to the nitrogen recovery process for effective treatment of urine and safe use of methylene urea as fertilizer

    Flat-plate submerged membrane bioreactor for the treatment of higher load graywater

    No full text
    Graywater treatment has been the focus when topics of decentralized treatment systems are discussed. In this paper, the treatment of higher-load graywater, a mixture of washing machine and kitchen sink wastewater, was investigated. A 10 L lab-scale submerged membrane bioreactor (subMBR) was operated with a flat-plate membrane for 87 days. Permeate was intermittently withdrawn at constant transmembrane pressure (TMP) induced by water level difference and without pump requirement. The pollutants\u27 removal and membrane behavior were monitored. The COD removal was around 96% and a permeate COD of about 26 mg L− 1 was obtained. The total linear alkylbenzene sulfonate (LAS) removal achieved was \u3e 99%, indicative of its non-inhibited degradation even at influent concentration of 30.8 mg L− 1. The subMBR was operated at almost stable and constant flux of 0.22 m3 m− 2 d− 1 at a mean HRT of 13.6 h

    Mathematical model for describing reactions of residual chlorine with organic matter in reclaimed wastewater

    Full text link
    Among several applications of urban wastewater reuse, use of reclaimed wastewater to sustain stream flows has become attractive in the urban area. Since these rivers are used for recreational purposes and for restoring aquatic eco-system, the adequate control of residual chlorine is essential. Mathematical model for describing reactions between residual chlorine and organic matter in reclaimed wastewater has been developed. The model considers the effect of molecular weight distribution of organic matter on the reaction rate. Lab-scale experiments were performed to estimate reaction rates constants and to examine their temperature dependency. The experiments showed that 1) the smaller organic matter gave the larger reaction rate; 2) temperature effect on reaction rate was described by the Arrhenius formula; 3) decline of free chlorine had more temperature dependency than combined chlorine. The comparison of computed results with data from lab-scale experiments confirmed the validity of the model. We used the one-dimensional dispersion model with proposed reaction model and examined the seasonal variation of residual chlorine profile along the river sustained by reclaimed wastewater in Sapporo. Simulation showed that seasonal variation of nitrification performance in secondary treatment as well as change in temperature caused seasonal variation in residual chlorine profile along the river.</jats:p

    Decline of residual chlorine in artificial stream flow sustained by reclaimed wastewater: field study in Sapporo

    Full text link
    Among several applications of urban wastewater reuse, use of reclaimed wastewater to sustain stream flows has become attractive especially in urban areas. This environmental application of reclaimed wastewater occupies about 32% of total wastewater reuse in Japan. In this paper, residual chlorine in the full-scale project for environmental application in Sapporo was discussed. The field survey of residual chlorine showed that there was the hourly variation of residual chlorine concentration in the river and this variation depended on the hourly variation in composition of chlorine species in the effluent of the WWTP, and that the rate of decline of residual chlorine in the open channel section was greater than that in the pipe flow section. The simple mathematical model was developed for describing the decline process on the basis of the dispersion model including two reactions: interaction of residual chlorine and organic matter in reclaimed water and interaction of chlorine and pipe surface or bio-film. The expressions for these two reaction rates were obtained by lab-scale experiments and these calibration results showed that consumption rate of residual chlorine in the aqueous phase was comparable to the rate on the pipe wall in the pipe flow section, and that residual chlorine in the open channel was consumed mainly by bio-film. The calibrated mathematical model yielded a good estimation of the chlorine concentration profile.</jats:p
    corecore