469 research outputs found
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
Liquid Polymorphism and Double Criticality in a Lattice Gas Model
We analyze the possible phase diagrams of a simple model for an associating
liquid proposed previously. Our two-dimensional lattice model combines
oreintati onal ice-like interactions and \"{}Van der Waals\"{} interactions
which may be repulsive, and in this case represent a penalty for distortion of
hydrogen bonds in the presence of extra molecules. These interactions can be
interpreted in terms of two competing distances, but not necessarily soft-core.
We present mean -field calculations and an exhaustive simulation study for
different parameters which represent relative strength of the bonding
interaction to the energy penalty for its distortion. As this ratio decreases,
a smooth disappearance of the doubl e criticality occurs. Possible connections
to liquid-liquid transitions of molecul ar liquids are suggested
Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific.Results: Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly.Methods: Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples.Conclusions: We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery
Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models
We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs
Liquid-Liquid Phase Transitions for Soft-Core Attractive Potentials
Using event driven molecular dynamics simulations, we study a three
dimensional one-component system of spherical particles interacting via a
discontinuous potential combining a repulsive square soft core and an
attractive square well. In the case of a narrow attractive well, it has been
shown that this potential has two metastable gas-liquid critical points. Here
we systematically investigate how the changes of the parameters of this
potential affect the phase diagram of the system. We find a broad range of
potential parameters for which the system has both a gas-liquid critical point
and a liquid-liquid critical point. For the liquid-gas critical point we find
that the derivatives of the critical temperature and pressure, with respect to
the parameters of the potential, have the same signs: they are positive for
increasing width of the attractive well and negative for increasing width and
repulsive energy of the soft core. This result resembles the behavior of the
liquid-gas critical point for standard liquids. In contrast, for the
liquid-liquid critical point the critical pressure decreases as the critical
temperature increases. As a consequence, the liquid-liquid critical point
exists at positive pressures only in a finite range of parameters. We present a
modified van der Waals equation which qualitatively reproduces the behavior of
both critical points within some range of parameters, and give us insight on
the mechanisms ruling the dependence of the two critical points on the
potential's parameters. The soft core potential studied here resembles model
potentials used for colloids, proteins, and potentials that have been related
to liquid metals, raising an interesting possibility that a liquid-liquid phase
transition may be present in some systems where it has not yet been observed.Comment: 29 pages, 15 figure
Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium
We report x-ray reflectivity (XR) and small angle off-specular diffuse
scattering (DS) measurements from the surface of liquid Indium close to its
melting point of C. From the XR measurements we extract the surface
structure factor convolved with fluctuations in the height of the liquid
surface. We present a model to describe DS that takes into account the surface
structure factor, thermally excited capillary waves and the experimental
resolution. The experimentally determined DS follows this model with no
adjustable parameters, allowing the surface structure factor to be deconvolved
from the thermally excited height fluctuations. The resulting local electron
density profile displays exponentially decaying surface induced layering
similar to that previously reported for Ga and Hg. We compare the details of
the local electron density profiles of liquid In, which is a nearly free
electron metal, and liquid Ga, which is considerably more covalent and shows
directional bonding in the melt. The oscillatory density profiles have
comparable amplitudes in both metals, but surface layering decays over a length
scale of \AA for In and \AA for Ga. Upon controlled
exposure to oxygen, no oxide monolayer is formed on the liquid In surface,
unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.
Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation
Ab initio molecular dynamics simulation is used to study the structure and
electronic properties of the liquid Ga-Se system at the three compositions
GaSe, GaSe and GaSe, and of the GaSe and GaSe crystals. The
calculated equilibrium structure of GaSe crystal agrees well with available
experimental data. The neutron-weighted liquid structure factors calculated
from the simulations are in reasonable agreement with recent neutron
diffraction measurements. Simulation results for the partial radial
distribution functions show that the liquid structure is closely related to
that of the crystals. A close similarity between solid and liquid is also found
for the electronic density of states and charge density. The calculated
electronic conductivity decreases strongly with increasing Se content, in
accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to
Phys. Rev. B. corresponding author: [email protected]
TGF-ß induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression.
Abstract
TGF-ß/Activin induces epithelial-to-mesenchymal transition (EMT) and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-ß transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3. Interestingly, we find that although the pro-tumourigenic miR-100 and miR-125b accordingly increase, the amount of anti-tumourigenic let-7a is unchanged, as TGF-ß also induces LIN28B inhibiting its maturation. Notably, we demonstrate that inactivation of miR-125b or miR-100 affects the TGF-ß-mediated response indicating that these miRNAs are important TGF-ß effectors. We integrated AGO2-RIP-seq with RNA-seq to identify the global regulation exerted by these miRNAs in PDAC cells. Transcripts targeted by miR-125b and miR-100 significantly overlap and mainly inhibit p53 and cell-cell junctions’ pathways. Together, we uncover that TGF-ß induces an lncRNA, whose encoded miRNAs, miR-100, let-7a and miR-125b, play opposing roles in controlling PDAC tumourigenesis
Spacetime Noncommutativity and Antisymmetric Tensor Dynamics in the Early Universe
This paper investigates the possible cosmological implications of the
presence of an antisymmetric tensor field related to a lack of commutatitivity
of spacetime coordinates at the Planck era. For this purpose, such a field is
promoted to a dynamical variable, inspired by tensor formalism. By working to
quadratic order in the antisymmetric tensor, we study the field equations in a
Bianchi I universe in two models: an antisymmetric tensor plus scalar field
coupled to gravity, or a cosmological constant and a free massless
antisymmetric tensor. In the first scenario, numerical integration shows that,
in the very early universe, the effects of the antisymmetric tensor can prevail
on the scalar field, while at late times the former approaches zero and the
latter drives the isotropization of the universe. In the second model, an
approximate solution is obtained of a nonlinear ordinary differential equation
which shows how the mean Hubble parameter and the difference between
longitudinal and orthogonal Hubble parameter evolve in the early universe.Comment: 25 pages, Revtex file, 4 figures in attachmen
Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly
We investigate the phase behavior of a single-component system in 3
dimensions with spherically-symmetric, pairwise-additive, soft-core
interactions with an attractive well at a long distance, a repulsive soft-core
shoulder at an intermediate distance, and a hard-core repulsion at a short
distance, similar to potentials used to describe liquid systems such as
colloids, protein solutions, or liquid metals. We showed [Nature {\bf 409}, 692
(2001)] that, even with no evidences of the density anomaly, the phase diagram
has two first-order fluid-fluid phase transitions, one ending in a
gas--low-density liquid (LDL) critical point, and the other in a
gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition
at low temperatures. Here we use integral equation calculations to explore the
3-parameter space of the soft-core potential and we perform molecular dynamics
simulations in the interesting region of parameters. For the equilibrium phase
diagram we analyze the structure of the crystal phase and find that, within the
considered range of densities, the structure is independent of the density.
Then, we analyze in detail the fluid metastable phases and, by explicit
thermodynamic calculation in the supercooled phase, we show the absence of the
density anomaly. We suggest that this absence is related to the presence of
only one stable crystal structure.Comment: 15 pages, 21 figure
- …
