4,960 research outputs found
Screening of heterogeneous surfaces: charge renormalization of Janus particles
Nonlinear ionic screening theory for heterogeneously charged spheres is
developed in terms of a mode-decomposition of the surface charge. A far-field
analysis of the resulting electrostatic potential leads to a natural
generalization of charge renormalization from purely monopolar to dipolar,
quadropolar, etc., including mode-couplings. Our novel scheme is generally
applicable to large classes of surface heterogeneities, and is explicitly
applied here to Janus spheres with differently charged upper and lower
hemispheres, revealing strong renormalization effects for all multipoles.Comment: 2 figure
The boundary field theory induced by the Chern-Simons theory
The Chern-Simons theory defined on a 3-dimensional manifold with boundary is
written as a two-dimensional field theory defined only on the boundary of the
three-manifold. The resulting theory is, essentially, the pullback to the
boundary of a symplectic structure defined on the space of auxiliary fields in
terms of which the connection one-form of the Chern-Simons theory is expressed
when solving the condition of vanishing curvature. The counting of the physical
degrees of freedom living in the boundary associated to the model is performed
using Dirac's canonical analysis for the particular case of the gauge group
SU(2). The result is that the specific model has one physical local degree of
freedom. Moreover, the role of the boundary conditions on the original Chern-
Simons theory is displayed and clarified in an example, which shows how the
gauge content as well as the structure of the constraints of the induced
boundary theory is affected.Comment: 10 page
Targeting tauopathy with engineered tau-degrading intrabodies
BACKGROUND: The accumulation of pathological tau is the main component of neurofibrillary tangles and other tau aggregates in several neurodegenerative diseases, referred to as tauopathies. Recently, immunotherapeutic approaches targeting tau have been demonstrated to be beneficial in decreasing tauopathy in animal models. We previously found that passive immunotherapy with anti-tau antibody to human tau or expression of an anti-tau secreted single-chain variable fragment (scFv) in the central nervous system of a mouse model of tauopathy decreased but did not remove all tau-associated pathology. Although these and other studies demonstrate that conventional immunotherapeutic approaches targeting tau can influence tau pathogenesis, the majority of pathological tau remains in the cytosol of cells, not typically accessible to an extracellular antibody. Therefore, we reasoned targeting intracellular tau might be more efficacious in preventing or decreasing tauopathy.
METHODS: By utilizing our anti-tau scFv, we generated anti-tau intrabodies for the expression in the cytosol of neurons. To enhance the degradation capacity of conventional intrabodies, we engineered chimeric anti-tau intrabodies fused to ubiquitin harboring distinct mutations that shuttle intracellular tau for either the proteasome or lysosomal mediated degradation. To evaluate the efficacy in delaying or eliminating tauopathy, we expressed our tau degrading intrabodies or controls in human tau transgenic mice by adeno-associated virus prior to overt tau pathology and after tau deposition.
RESULTS: Our results demonstrate, the expression of chimeric anti-tau intrabodies significantly reduce tau protein levels in primary neuronal cultures expression human tau relative to a non-modified anti-tau intrabody. We found the expression of engineered tau-degrading intrabodies destined for proteasomal-mediated degradation are more effective in delaying or eliminating tauopathy than a conventional intrabody in aged human tau transgenic mice.
CONCLUSION: This study, harnesses the strength of intrabodies that are amendable for targeting specific domains or modifications with the cell-intrinsic mechanisms that regulate protein degradation providing a new immunotherapeutic approach with potentially improved efficacy
Influences of thermal environment on fish growth
Indexación: Scopus.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3239/ful
Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument
We evaluate the modulation of Cosmic Microwave Background (CMB) polarization
using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search
(ABS). After demodulating the time-ordered-data (TOD), we find a significant
reduction of atmospheric fluctuations. The demodulated TOD is stable on time
scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This
facilitates recovery of cosmological information at large angular scales, which
are typically available only from balloon-borne or satellite experiments. This
technique also achieves a sensitive measurement of celestial polarization
without differencing the TOD of paired detectors sensitive to two orthogonal
linear polarizations. This is the first demonstration of the ability to remove
atmospheric contamination at these levels from a ground-based platform using a
rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of
cosmic microwave background polarization with a warm rapidly rotating
half-wave plate on the Atacama B-Mode Search instrument.
The order parameter-entropy relation in some universal classes: experimental evidence
The asymptotic behaviour near phase transitions can be suitably characterized
by the scaling of with , where is
the excess entropy and is the order parameter. As is obtained by
integration of the experimental excess specific heat of the transition , it displays little experimental noise so that the curve versus is better constrained than, say,
versus . The behaviour of for different
universality classes is presented and compared. In all cases, it clearly
deviates from being a constant. The determination of this function can then be
an effective method to distinguish asymptotic critical behaviour. For
comparison, experimental data for three very different systems, Rb2CoF4,
Rb2ZnCl4 and SrTiO3, are analysed under this approach. In SrTiO3, the function
does not deviate within experimental resolution from a straight
line so that, although Q can be fitted with a non mean-field exponent, the data
can be explained by a classical Landau mean-field behaviour. In contrast, the
behaviour of for the antiferromagnetic transition in Rb2CoF4 and
the normal-incommensurate phase transition in Rb2ZCl4 is fully consistent with
the asymptotic critical behaviour of the universality class corresponding to
each case. This analysis supports, therefore, the claim that incommensurate
phase transitions in general, and the ABX compounds in particular, in
contrast with most structural phase transitions, have critical regions large
enough to be observable.Comment: 13 pp. 9 ff. 2 tab. RevTeX. Submitted to J. Phys.: Cond. Matte
Boundary conditions: The path integral approach
The path integral approach to quantum mechanics requires a substantial
generalisation to describe the dynamics of systems confined to bounded domains.
Non-local boundary conditions can be introduced in Feynman's approach by means
of boundary amplitude distributions and complex phases to describe the quantum
dynamics in terms of the classical trajectories. The different prescriptions
involve only trajectories reaching the boundary and correspond to different
choices of boundary conditions of selfadjoint extensions of the Hamiltonian.
One dimensional particle dynamics is analysed in detail.Comment: 8 page
A particle swarm optimization based memetic algorithm for dynamic optimization problems
Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under
Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research
Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60
- …
