112 research outputs found
Comparison between the Valsalva maneuver and intraoperative traction measurements in pelvic organ prolapse assessment.
OBJECTIVE: To compare the assessment of pelvic organ prolapse (POP) between the Pelvic Organ Prolapse Quantification (POP-Q) system with Valsalva maneuver and intraoperative measurement with mechanical traction. METHODS: A prospective observational study included 100 women with POP attending a tertiary urogynecology clinic in the UK and undergoing vaginal prolapse surgical procedures between October 2011 and October 2014. The women were examined in the clinic using POP-Q with the Valsalva maneuver and in the operating theater under general anesthesia with mechanical traction. The two sets of measurements were compared. RESULTS: All POP-Q measurements obtained with traction demonstrated significantly higher descent as compared with those measured by Valsalva maneuver (mean differences: Aa 0.64 cm; Ap 1.32 cm; Ba 0.96 cm; Bp 1.34 cm; C 3.57 cm; D 3.40 cm; all P<0.001). The perineal body and total vaginal lengths did not differ significantly. CONCLUSION: Measurements of six POP-Q points obtained with traction showed a higher grade of POP than those assessed with Valsalva maneuver. On this basis, surgeons might decide on the extent of surgical procedure after examination under anesthesia; however, preoperative patient counselling would be essential to obtain consent for this approach. The clinical significance of the findings requires further evaluation
NOVEL DIGITAL LOCK SYSTEM
In this paper we have proposed a new digital lock model which is primarily designed for low cost intermediate security purpose. Even though there are digital locks available this one is designed keeping the common man in mind. It will be the first digital locking system that would be available at a price less than 700 rupees. The recent increase in burglary levels proves the fact that the lever locking system is no more reliable and effective, but on the other hand the present digital locks are around 3000 rupees making it over priced. So this clearly shows the need for an intermediate effective digital locking system. Our novel digital locking system is aimed exactly to solve the above stated problem. Our model is an outcome of embedded system and can works using an 8051 microcontroller interfaced with a 16*2 lcd to perform logical operations. The input is given by the user using 3*3 matrixes key padded system. The locking system consist of a power lock which is widely used in automobiles, it primarily consist of an dc motor which on rotating moves the lever back and forth depending on the direction of rotation. The interrupt pins are used to clear the buzzer which is connected to port 3 pins which thereby notifies the user immediately in case of theft or burglary
Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration
K
Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived cultures
Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived culturesHuman motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.This work was funded by Project A.L.S., P2ALS and NYSTEM grant number CO24415. The work of N.J.L. was supported by the Portuguese Foundation for Science and Technology SFRH/BD/33421/2008 and the Luso-American Development Foundation. B.J.-K. was supported by the National Institute of Neurological Disorders and Stroke (NINDS). L.R. was supported by the Swedish Brain Foundation/Hjarnfonden. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Ultrafast epitaxial growth of CuO nanowires using atmospheric pressure plasma with enhanced electrocatalytic and photocatalytic activities
This work reports an environment friendly alternative to epitaxially grow copper oxide nanowires (NWs) on copper substrates using single step atmospheric pressure plasma jet assisted oxidation. NWs of average length 300 nm are grown rapidly in 5 minutes along with transforming the surface to superhydrophilic. This method introduces defects in the nanowire structure which is otherwise difficult to achieve due to the highly isotropic nature of nanowire growth. High resolution transmission electron microscopy reveals vacancies and structural defects such as lattice twinning and kinks. Theoretical investigations using density functional theory calculations indicated that oxygen vacancies reduces the adsorption energy of methanol molecules onto the CuO (111) surface and shifts the Fermi level towards conduction band. During electrocatalysis, these defect-rich nanowires exhibit twice the catalytic activity toward oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in comparison to the traditionally thermally grown nanowires. Moreover, retreating the electrodes after each stability test drops the contact resistance similar to the prisitine sample. Additionally, these NW photocathodes demonstrate an exceptional photocurrent of 2.2 mAcm–2 and have an excellent degradation activity towards organic pollutants namely phenol and paracetamol. This facile growth method can be used to engineer nanowires of other transition metals with enhanced activities
Possible mechanisms of hypotension produced 70% alcoholic extract of Terminalia arjuna (L.) in anaesthetized dogs
BACKGROUND: The bark of Terminalia arjuna L. (Combretaceae) is used in Ayurveda since ancient times for the treatment of cardiac disorders. Previous laboratory investigations have demonstrated the use of the bark in cardiovascular complications. The present study was aimed to find the effect of 70% alcoholic extract of Terminalia arjuna on anaesthetized dog blood pressure and probable site of action. METHODS: Six dogs were anaesthetized with intraperitoneal injection of thiopental sodium and the blood pressure of each dog (n = 6) was measured from the left common carotid artery connected to a mercury manometer on kymograph. The femoral vein was cannulated for administration of drug solutions. The extract of T. arjuna (dissolved in propylene glycol) in the dose range of 5 to 15 mg/kg were administered intravenously in a pilot study and the dose (6 mg/kg) which produced appreciable hypotension was selected for further studies. RESULTS: Intravenous administration of T. arjuna produced dose-dependent hypotension in anaesthetized dogs. The hypotension produced by 6 mg/kg dose of the extract was blocked by propranolol but not by atropine or mepyramine maleate. This indicates that muscarinic or histaminergic mechanisms are not likely to be involved in the hypotension produced by the extract. The blockade by propranolol of the hypotension produced by T. arjuna indicates that the extract might contain active compound(s) possessing adrenergic ß(2)-receptor agonist action and/or that act directly on the heart muscle. CONCLUSION: The results indicated the likely involvement of peripheral mechanism for hypotension produced by the 70% alcoholic extract of Terminalia arjuna and lends support for the claims of its traditional usage in cardiovascular disorders
Electrically Guiding Migration of Human Induced Pluripotent Stem Cells
A major road-block in stem cell therapy is the poor homing and integration of transplanted stem cells with the targeted host tissue. Human induced pluripotent stem (hiPS) cells are considered an excellent alternative to embryonic stem (ES) cells and we tested the feasibility of using small, physiological electric fields (EFs) to guide hiPS cells to their target. Applied EFs stimulated and guided migration of cultured hiPS cells toward the anode, with a stimulation threshold of <30 mV/mm; in three-dimensional (3D) culture hiPS cells remained stationary, whereas in an applied EF they migrated directionally. This is of significance as the therapeutic use of hiPS cells occurs in a 3D environment. EF exposure did not alter expression of the pluripotency markers SSEA-4 and Oct-4 in hiPS cells. We compared EF-directed migration (galvanotaxis) of hiPS cells and hES cells and found that hiPS cells showed greater sensitivity and directedness than those of hES cells in an EF, while hES cells migrated toward cathode. Rho-kinase (ROCK) inhibition, a method to aid expansion and survival of stem cells, significantly increased the motility, but reduced directionality of iPS cells in an EF by 70–80%. Thus, our study has revealed that physiological EF is an effective guidance cue for the migration of hiPS cells in either 2D or 3D environments and that will occur in a ROCK-dependent manner. Our current finding may lead to techniques for applying EFs in vivo to guide migration of transplanted stem cells
NCI60 Cancer Cell Line Panel Data and RNAi Analysis Help Identify EAF2 as a Modulator of Simvastatin and Lovastatin Response in HCT-116 Cells
Simvastatin and lovastatin are statins traditionally used for lowering serum cholesterol levels. However, there exists evidence indicating their potential chemotherapeutic characteristics in cancer. In this study, we used bioinformatic analysis of publicly available data in order to systematically identify the genes involved in resistance to cytotoxic effects of these two drugs in the NCI60 cell line panel. We used the pharmacological data available for all the NCI60 cell lines to classify simvastatin or lovastatin resistant and sensitive cell lines, respectively. Next, we performed whole-genome single marker case-control association tests for the lovastatin and simvastatin resistant and sensitive cells using their publicly available Affymetrix 125K SNP genomic data. The results were then evaluated using RNAi methodology. After correction of the p-values for multiple testing using False Discovery Rate, our results identified three genes (NRP1, COL13A1, MRPS31) and six genes (EAF2, ANK2, AKAP7, STEAP2, LPIN2, PARVB) associated with resistance to simvastatin and lovastatin, respectively. Functional validation using RNAi confirmed that silencing of EAF2 expression modulated the response of HCT-116 colon cancer cells to both statins. In summary, we have successfully utilized the publicly available data on the NCI60 cell lines to perform whole-genome association studies for simvastatin and lovastatin. Our results indicated genes involved in the cellular response to these statins and siRNA studies confirmed the role of the EAF2 in response to these drugs in HCT-116 colon cancer cells
Repair at Single Targeted DNA Double-Strand Breaks in Pluripotent and Differentiated Human Cells
Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB) in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs) based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny
Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice
<p>Abstract</p> <p>Background</p> <p>Obesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-<it>db/db </it>(<it>db/db</it>) obese mice.</p> <p>Methods</p> <p>Male <it>db/db </it>mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks.</p> <p>Results</p> <p>At sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of <it>TNF-α </it>and <it>interleukin-6 </it>mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition.</p> <p>Conclusions</p> <p>Pitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals.</p
- …
