835 research outputs found
Electromagnetic vacuum energy for two parallel slabs in terms of surface, wave guide and photonic modes
The formulation of the Lifshitz formula in terms of real frequencies is
reconsidered for half spaces described by the plasma model. It is shown that
besides the surface modes (for the TM polarization), and the photonic modes,
also waveguide modes must be considered.Comment: some references adde
Weak Measurements of Light Chirality with a Plasmonic Slit
We examine, both experimentally and theoretically, an interaction of tightly
focused polarized light with a slit on a metal surface supporting
plasmon-polariton modes. Remarkably, this simple system can be highly sensitive
to the polarization of the incident light and offers a perfect
quantum-weak-measurement tool with a built-in post-selection in the
plasmon-polariton mode. We observe the plasmonic spin Hall effect in both
coordinate and momentum spaces which is interpreted as weak measurements of the
helicity of light with real and imaginary weak values determined by the input
polarization. Our experiment combines advantages of (i) quantum weak
measurements, (ii) near-field plasmonic systems, and (iii) high-numerical
aperture microscopy in employing spin-orbit interaction of light and probing
light chirality.Comment: 5 pages, 3 figure
Schur elements for the Ariki-Koike algebra and applications
We study the Schur elements associated to the simple modules of the
Ariki-Koike algebra. We first give a cancellation-free formula for them so that
their factors can be easily read and programmed. We then study direct
applications of this result. We also complete the determination of the
canonical basic sets for cyclotomic Hecke algebras of type in
characteristic 0.Comment: The paper contains the results of arXiv:1101.146
Propriétés spectroscopiques de U4+ dans ThBr4
L'indexation de raies à zéro phonon du spectre d'absorption de ThBr4 : U4+ est discutée, compte tenu du spectre de vibration de la matrice et des spectres d'émission de ces monocristaux excites par laser
Influence of water adsorbed on gold on van der Waals/Casimir forces
In this paper we investigate the influence of ultra thin water layer (1-1.5
nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is
inevitably present on gold surfaces at ambient conditions as jump-up-to contact
during adhesion experiments demonstrate. Calculations based on the Lifshitz
theory give very good agreement with the experiment in absence of any water
layer for surface separations d>10 nm. However, a layer of thickness h<1.5 nm
is allowed by the error margin in force measurements. At shorter separations,
d<10 nm, the water layer can have a strong influence as calculations show for
flat surfaces. Nonetheless, in reality the influence of surface roughness must
also be considered, and it can overshadow any water layer influence at
separations comparable to the total sphere-plate rms roughness w_{shp}+w.Comment: 8 pages, 5 figure, to be published in Phys. Rev.
Giant slip lengths of a simple fluid at vibrating solid interfaces
It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane
configuration a mechanical resonator vibrating close to a rigid wall in a
simple fluid can be overdamped to a frozen regime. Here, by solving
analytically the Navier Stokes equations with partial slip boundary conditions
at the solid fluid interface, we develop a theoretical approach justifying and
extending these earlier findings. We show in particular that in the perfect
slip regime the above mentioned results are, in the plane-plane configuration,
very general and robust with respect to lever geometry considerations. We
compare the results with those obtained previously for the sphere moving
perpendicularly and close to a plane in a simple fluid and discuss in more
details the differences concerning the dependence of the friction forces with
the gap distance separating the moving object (i.e., plane or sphere) from the
fixed plane. Finally, we show that the submicron fluidic effect reported in the
reference above, and discussed further in the present work, can have dramatic
implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
Absorbable versus silk sutures for surgical treatment of trachomatous trichiasis in Ethiopia: a randomised controlled trial.
BACKGROUND: Trachoma causes blindness through an anatomical abnormality called trichiasis (lashes touching the eye). Trichiasis can recur after corrective surgery. We tested the hypothesis that using absorbable sutures instead of silk sutures might reduce the risk of recurrent disease among patients with major trichiasis in a randomised trial. METHODS AND FINDINGS: 1,300 individuals with major trichiasis from rural villages in the Amhara Region of Ethiopia were recruited and assigned (1:1) by computer-generated randomisation sequence to receive trichiasis surgery using either an absorbable suture (polyglactin-910) or silk sutures (removed at 7-10 days) in an otherwise identical surgical technique. Participants were examined every 6 months for 2 years by clinicians masked to allocation. The primary outcome measure was recurrent trichiasis (≥one lash touching the eye) at 1 year. There was no difference in prevalence of recurrent trichiasis at 1 year (114 [18.2%] in the absorbable suture group versus 120 [19.7%] in the silk suture group; odds ratio = 0.90, 95% CI 0.68-1.20). The two groups also did not differ in terms of corneal opacification, visual acuity, conjunctival inflammation, and surgical complications. CONCLUSIONS: There was no evidence that use of absorbable polyglactin-910 sutures was associated with a lower prevalence of trichiasis recurrence at 1 year postsurgery than silk sutures. However, from a programmatic perspective, polyglactin-910 offers the major advantage that patients do not have to be seen soon after surgery for suture removal. The postoperative review after surgery using absorbable polyglactin-910 sutures can be delayed for 3-6 months, which might allow us to better determine whether a patient needs additional surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT00522860
Casimir energy and geometry : beyond the Proximity Force Approximation
We review the relation between Casimir effect and geometry, emphasizing
deviations from the commonly used Proximity Force Approximation (PFA). We use
to this aim the scattering formalism which is nowadays the best tool available
for accurate and reliable theory-experiment comparisons. We first recall the
main lines of this formalism when the mirrors can be considered to obey
specular reflection. We then discuss the more general case where non planar
mirrors give rise to non-specular reflection with wavevectors and field
polarisations mixed. The general formalism has already been fruitfully used for
evaluating the effect of roughness on the Casimir force as well as the lateral
Casimir force or Casimir torque appearing between corrugated surfaces. In this
short review, we focus our attention on the case of the lateral force which
should make possible in the future an experimental demonstration of the
nontrivial (i.e. beyond PFA) interplay of geometry and Casimir effect.Comment: corrected typos, added references, QFEXT'07 special issue in J. Phys.
UBVJHKLM photometry and modeling of R Coronae Borealis
We present the results of UBVJHKLM photometry of R CrB spanning the period
from 1976 to 2001. Studies of the optical light curve have shown no evidence of
any stable harmonics in the variations of the stellar emission. In the L band
we found semi-regular oscillations with the two main periods of ~3.3 yr and
11.9 yr and the full amplitude of ~0.8 mag and ~0.6 mag, respectively. The
colors of the warm dust shell (resolved by Ohnaka et al. 2001) are found to be
remarkably stable in contrast to its brightness. This indicates that the inner
radius is a constant, time-independent characteristic of the dust shell. The
observed behavior of the IR light curve is mainly caused by the variation of
the optical thickness of the dust shell within the interval \tau(V)= 0.2-0.4.
Anticorrelated changes of the optical brightness (in particular with P ~ 3.3
yr) have not been found. Their absence suggests that the stellar wind of R CrB
deviates from spherical symmetry. The light curves suggest that the stellar
wind is variable. The variability of the stellar wind and the creation of dust
clouds may be caused by some kind of activity on the stellar surface. With some
time lag, periods of increased mass-loss cause an increase in the dust
formation rate at the inner boundary of the extended dust shell and an increase
in its IR brightness. We have derived the following parameters of the dust
shell (at mean brightness) by radiative transfer modeling: inner dust shell
radius r_in ~ 110 R_*, temperature T_dust(r_in) ~ 860 K, dust density
\rho_dust(r_in) ~ 1.1x10^{-20} g cm^-3, optical depth \tau(V) ~ 0.32 at 0.55
micron, mean dust formation rate [dM/dt]_dust ~ 3.1x10^-9 M_sun / yr, mass-loss
rate [dM/dt]_gas ~ 2.1x10^-7 M_sun / yr, size of the amorphous carbon grains
<(~) 0.01 micron, and B-V ~ -0.28.Comment: 9 pages, 6 figures, accepted for publication in A&
Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions
We have performed a precise experimental determination of the Casimir
pressure between two gold-coated parallel plates by means of a micromachined
oscillator. In contrast to all previous experiments on the Casimir effect,
where a small relative error (varying from 1% to 15%) was achieved only at the
shortest separation, our smallest experimental error (%) is achieved
over a wide separation range from 170 nm to 300 nm at 95% confidence. We have
formulated a rigorous metrological procedure for the comparison of experiment
and theory without resorting to the previously used root-mean-square deviation,
which has been criticized in the literature. This enables us to discriminate
among different competing theories of the thermal Casimir force, and to resolve
a thermodynamic puzzle arising from the application of Lifshitz theory to real
metals. Our results lead to a more rigorous approach for obtaining constraints
on hypothetical long-range interactions predicted by extra-dimensional physics
and other extensions of the Standard Model. In particular, the constraints on
non-Newtonian gravity are strengthened by up to a factor of 20 in a wide
interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar
on Gravitation and Cosmolog
- …
