301 research outputs found
CH in stellar atmospheres: an extensive linelist
The advent of high-resolution spectrographs and detailed stellar atmosphere
modelling has strengthened the need for accurate molecular data.
Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with
which to study transitions from the CH molecule. We combine programs for
spectral analysis of molecules and stellar-radiative transfer codes to build an
extensive CH linelist, including predissociation broadening as well as newly
identified levels. We show examples of strong predissociation CH lines in CEMP
stars, and we stress the important role played by the CH features in the
Bond-Neff feature depressing the spectra of barium stars by as much as 0.2
magnitudes in the 3000 -- 5500 \AA\ range. Because of the extreme
thermodynamic conditions prevailing in stellar atmospheres (compared to the
laboratory), molecular transitions with high energy levels can be observed.
Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at
http://www.astro.ulb.ac.be/~spectrotools
IC-Cut: A Compositional Search Strategy for Dynamic Test Generation
Abstract. We present IC-Cut, short for “Interface-Complexity-based Cut”, a new compositional search strategy for systematically testing large programs. IC-Cut dynamically detects function interfaces that are simple enough to be cost-effective for summarization. IC-Cut then hierarchically decomposes the program into units defined by such functions and their sub-functions in the call graph. These units are tested independently, their test results are recorded as low-complexity function summaries, and the summaries are reused when testing higher-level functions in the call graph, thus limiting overall path explosion. When the decomposed units are tested exhaustively, they constitute verified components of the program. IC-Cut is run dynamically and on-the-fly during the search, typically refining cuts as the search advances. We have implemented this algorithm as a new search strategy in the whitebox fuzzer SAGE, and present detailed experimental results ob-tained when fuzzing the ANI Windows image parser. Our results show that IC-Cut alleviates path explosion while preserving or even increasing code coverage and bug finding, compared to the current generational-search strategy used in SAGE.
A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis)
The consistency and reliability of Ellenberg’s indicator values (Eiv) as ecological descriptors of the Mediterranean evergreen vegetation ascribed to the phytosociological class Quercetea ilicis have been checked on a set of 859 phytosociological relevés × 699 species. Diagnostic species were identified through a Twinspan analysis and their Eiv analyzed and related to the following independent variables: (1) annual mean temperatures, (2) annual rainfall. The results provided interesting insights to disentangle the current syntaxonomical framework at the alliance level demonstrating the usefulness of ecological indicator values to test the efficiency and predictivity of the phytosociological classification
On Refinements of Boolean and Parametric Modal Transition Systems
We consider the extensions of modal transition systems (MTS), namely Boolean
MTS and parametric MTS and we investigate the refinement problems over both
classes. Firstly, we reduce the problem of modal refinement over both classes
to a problem solvable by a QBF solver and provide experimental results showing
our technique scales well. Secondly, we extend the algorithm for thorough
refinement of MTS providing better complexity then via reductions to previously
studied problems. Finally, we investigate the relationship between modal and
thorough refinement on the two classes and show how the thorough refinement can
be approximated by the modal refinement
Irreducible tensor-form of the relativistic corrections to the M1 transition operator
The relativistic corrections to the magnetic dipole moment operator in the
Pauli approximation were derived originally by Drake (Phys. Rev. A 3(1971)908).
In the present paper, we derive their irreducible tensor-operator form to be
used in atomic structure codes adopting the Fano-Racah-Wigner algebra for
calculating its matrix elements.Comment: 26 page
Robustness Testing of Intermediate Verifiers
Program verifiers are not exempt from the bugs that affect nearly every piece
of software. In addition, they often exhibit brittle behavior: their
performance changes considerably with details of how the input program is
expressed-details that should be irrelevant, such as the order of independent
declarations. Such a lack of robustness frustrates users who have to spend
considerable time figuring out a tool's idiosyncrasies before they can use it
effectively.
This paper introduces a technique to detect lack of robustness of program
verifiers; the technique is lightweight and fully automated, as it is based on
testing methods (such as mutation testing and metamorphic testing). The key
idea is to generate many simple variants of a program that initially passes
verification. All variants are, by construction, equivalent to the original
program; thus, any variant that fails verification indicates lack of robustness
in the verifier.
We implemented our technique in a tool called "mugie", which operates on
programs written in the popular Boogie language for verification-used as
intermediate representation in numerous program verifiers. Experiments
targeting 135 Boogie programs indicate that brittle behavior occurs fairly
frequently (16 programs) and is not hard to trigger. Based on these results,
the paper discusses the main sources of brittle behavior and suggests means of
improving robustness
Scientific user requirements for a herbarium data portal
The digitization of herbaria and their online access will greatly facilitate access to plant collections around the world. This will improve the efficiency of taxonomy and help reduce inequalities between scientists. The Botanic Garden Meise, Belgium, is currently digitizing 1.2 million specimens including label data. In this paper we describe the user requirements analysis conducted for a new herbarium web portal. The aim was to identify the required functionality, but also to assist in the prioritization of software development and data acquisition. The Garden conducted the analysis in cooperation with Clockwork, the digital engagement agency of Ordina. Using a series of interactive interviews, potential users were consulted from universities, research institutions, science-policy initiatives and the Botanic Garden Meise. Although digital herbarium data have many potential stakeholders, we focused on the needs of taxonomists, ecologists and historians, who are currently the primary users of the Meise herbarium data portal. The three categories of user have similar needs, all wanted as much specimen data as possible, and for those data, to be interlinked with other digital resources within and outside the Garden. Many users wanted an interactive system that they could comment on, or correct online, particularly if such corrections and annotations could be used to rank the reliability of data. Many requirements depend on the quality of the digitized data associated with each specimen. The essential data fields are the taxonomic name; geographic location; country; collection date; collector name and collection number. Also all researchers valued linkage between biodiversity literature and specimens. Nevertheless, to verify digitized data the researchers still want access to high quality images, even if fully transcribed label information is provided. The only major point of disagreement is the level of access users should have and what they should be allowed to do with the data and images. Not all of the user requirements are feasible given the current technical and regulatory landscape, however, the potential of these suggestions is discussed. Currently, there is no off-the-shelf solution to satisfy all these user requirements, but the intention of this paper is to guide other herbaria who are prioritising their investment in digitization and online web functionalit
Towards concolic testing for hybrid systems
Hybrid systems exhibit both continuous and discrete behavior. Analyzing hybrid systems is known to be hard. Inspired by the idea of concolic testing (of programs), we investigate whether we can combine random sampling and symbolic execution in order to effectively verify hybrid systems. We identify a sufficient condition under which such a combination is more effective than random sampling. Furthermore, we analyze different strategies of combining random sampling and symbolic execution and propose an algorithm which allows us to dynamically switch between them so as to reduce the overall cost. Our method has been implemented as a web-based checker named HYCHECKER. HYCHECKER has been evaluated with benchmark hybrid systems and a water treatment system in order to test its effectiveness.CPCI-S(ISTP)[email protected]; [email protected]
Local reasoning about the presence of bugs: Incorrectness Separation Logic
There has been a large body of work on local reasoning for proving the absence of bugs, but none for proving their presence. We present a new formal framework for local reasoning about the presence of bugs, building on two complementary foundations: 1) separation logic and 2) incorrectness logic. We explore the theory of this new incorrectness separation logic (ISL), and use it to derive a begin-anywhere, intra-procedural symbolic execution analysis that has no false positives by construction. In so doing, we take a step towards transferring modular, scalable techniques from the world of program verification to bug catching
- …
