676 research outputs found
Heavy Quark Mass Effects in Deep Inelastic Scattering and Global QCD Analysis
A new implementation of the general PQCD formalism of Collins, including
heavy quark mass effects, is described. Important features that contribute to
the accuracy and efficiency of the calculation of both neutral current (NC) and
charged current (CC) processess are explicitly discussed. This new
implementation is applied to the global analysis of the full HERA I data sets
on NC and CC cross sections, with correlated systematic errors, in conjunction
with the usual fixed-target and hadron collider data sets. By using a variety
of parametrizations to explore the parton parameter space, robust new parton
distribution function (PDF) sets (CTEQ6.5) are obtained. The new quark
distributions are consistently higher in the region x ~ 10^{-3} than previous
ones, with important implications on hadron collider phenomenology, especially
at the LHC. The uncertainties of the parton distributions are reassessed and
are compared to the previous ones. A new set of CTEQ6.5 eigenvector PDFs that
encapsulates these uncertainties is also presented.Comment: 32 pages, 12 figures; updated, Publication Versio
Small x behavior of the slope dlnF_2/dln(1/x) in the framework of perturbative QCD
Using an analytical parameterization for the behavior of the x slope of the
structure function F_2 at small x in perturbative QCD, at the leading twist
approximation of the Wilson operator product expansion, and applying a flat
initial condition in the DGLAP evolution equations, we found very good
agreement with new precise deep inelastic scattering experimental data from
HERA.Comment: 13 pages, 3 figures, late
Fractal Inspired Models of Quark and Gluon Distributions and Longitudinal Structure Function FL(x, Q2) at small x
In recent years, Fractal Inspired Models of quark and gluon densities at
small x have been proposed. In this paper, we investigate longitudinal
structure function F-L (x, Q2) within this approach. We make predictions using
the QCD based approximate relation between the longitudinal structure function
and the gluon density. As the Altarelli-Martinelli equation for the
longitudinal structure function cannot be applied to Model I due to the
presence of a singularity in the Bjorken x-space we consider Model II only. The
qualitative feature of the prediction of Model II is found to be compatible
with the QCD expectation.Comment: 11 pages, 4 figures, Accepted for publication on 10-07-2010 in Indian
Journal of Physic
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
- …
