5,255 research outputs found

    Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions

    Get PDF
    Analysis of biaxial texture of MgO films grown by ion-beam-assisted deposition (IBAD) has been performed using a quantitative reflection high-energy electron diffraction (RHEED) based method. MgO biaxial texture is determined by analysis of diffraction spot shapes from single RHEED images, and by measuring the width of RHEED in-plane rocking curves for MgO films grown on amorphous Si3N4 by IBAD using 750 eV Ar+ ions, at 45° incidence angle, and MgO e-beam evaporation. RHEED-based biaxial texture measurement accuracy is verified by comparison with in-plane and out-of-plane orientation distribution measurements made using transmission electron microscopy and x-ray rocking curves. In situ RHEED measurements also enable the analysis of the evolution of the biaxial texture which narrows with increasing film thickness. RHEED-based measurements of IBAD MgO biaxial texture show that the minimum in-plane orientation distribution depends on the out-of-plane orientation distribution, and indicates that the minimum obtainable in-plane orientation on distribution is 2°

    In-situ biaxial texture analysis of MgO films during growth on amorphous substrates by ion-beam-assisted deposition

    Get PDF
    We used a kinematical electron scattering model to develop a RHEED based method for performing quantitative analysis of mosaic polycrystalline thin film in-plane and out-of-plain grain orientation distributions. RHEED based biaxial texture measurements are compared to x-ray and transmission electron microscopy measurements to establish the validity of the RHEED analysis method. MgO was grown on amorphous Si3N4 by ion beam-assisted deposition (IBAD) using 750 eV Ar+ ions and MgO e-beam evaporation. The ion/MgO flux ratio was varied between 0.66 and 0.42. In situ RHEED analysis reveals that during nucleation the out-of-plane orientation distribution is very broad (almost random), but narrows very quickly once well-oriented grains reach a critical size. Under optimal conditions a competition between selective sputtering and surface roughening yields a minimum out-of-plane texture at about 100 angstrom, which degrades with increasing film thickness. The narrowest in- plane orientation distribution (5.4 degrees FWHM) was found to be at an ion/MgO flux ratio between 0.55 and 0.51, in good agreement with previous experiments. The systematic offsets between RHEED analysis and x-ray measurements of biaxial texture, coupled with evidence that biaxial texture improves with increasing film thickness, indicates that RHEED is a superior technique for probing surface biaxial texture

    Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82

    Get PDF
    We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude that shocks in the outflow regions have no measurable influence on the H_2 emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little variations across the plane, indicating that the dominant stellar population is evolved (5 - 6 Myr) and well distributed. There is a slight increase of the ratio with distance from the galactic plane of M82 which we attribute to a decrease in gas density. Our observations indicate that the star formation rate has decreased significantly in the last 5 Myr. The quantities of dust and molecular gas in the central area of the galaxy argue against starvation and for negative feedback processes, observable through the strong extra-planar outflows.Comment: 15 pages, 12 figures, 3 tables, ApJ, emulateap

    Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    Get PDF
    (abridged) The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (MM_*) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter C\mathcal{C}, that parametrizes this geometry and hence the evolution of dust temperature (TdustT_{\rm{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap

    Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease

    Get PDF
    While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant-microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon

    Quantum Energies of Strings in a 2+1 Dimensional Gauge Theory

    Get PDF
    We study classically unstable string type configurations and compute the renormalized vacuum polarization energies that arise from fermion fluctuations in a 2+1 dimensional analog of the standard model. We then search for a minimum of the total energy (classical plus vacuum polarization energies) by varying the profile functions that characterize the string. We find that typical string configurations bind numerous fermions and that populating these levels is beneficial to further decrease the total energy. Ultimately our goal is to explore the stabilization of string type configurations in the standard model through quantum effects. We compute the vacuum polarization energy within the phase shift formalism which identifies terms in the Born series for scattering data and Feynman diagrams. This approach allows us to implement standard renormalization conditions of perturbation theory and thus yields the unambiguous result for this non--perturbative contribution to the total energy.Comment: 26 pages, 20 eps-files combined to 8 figures, minor typos corrected. Version to be published in Nucl. Phys.

    Cell Lineage Determination and the Control of Neuronal Identity in the Neural Crest

    Get PDF
    The diverse cell types of complex tissues such as the blood and the brain are generated from self-renewing, multipotent progenitors called stem cells (for reviews, see Hall and Watt 1989; Potten and Loeffler 1990; Morrison et al. 1997). These stem cells must generate progeny of different phenotypes, in the correct proportions, sequence, and location. The manner in which this is accomplished is not well understood. It is clear that the local microenvironment of stem cells has an important influence on their development, as do transcription factors that act within the cells. However, the manner in which such signals and transcription factors interact to control lineage determination by multipotent stem cells is poorly understood. To address this issue, it is necessary to both alter the expression of transcription factors in stem cells and challenge the cells by altering their environment to determine their state of lineage commitment. There are relatively few experimental systems in which such combined genetic and cell biological manipulation of stern cells are feasible

    When Analysis Fails: Heuristic Mechanism Design via Self-Correcting Procedures

    Get PDF
    Computational mechanism design (CMD) seeks to understand how to design game forms that induce desirable outcomes in multi-agent systems despite private information, self-interest and limited computational resources. CMD finds application in many settings, in the public sector for wireless spectrum and airport landing rights, to Internet advertising, to expressive sourcing in the supply chain, to allocating computational resources. In meeting the demands for CMD in these rich domains, we often need to bridge from the theory of economic mechanism design to the practice of deployable, computational mechanisms. A compelling example of this need arises in dynamic combinatorial environments, where classic analytic approaches fail and heuristic, computational approaches are required. In this talk I outline the direction of self-correcting mechanisms, which dynamically modify decisions via “output ironing" to ensure truthfulness and provide a fully computational approach to mechanism design. For an application, I suggest heuristic mechanisms for dynamic auctions in which bids arrive over time and supply may also be uncertain.Engineering and Applied Science

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass MM_* and the general kinematic parameter SK=KVrot2+σ2S_K = \sqrt{K V_{rot}^2 + \sigma^2} that combines rotation velocity VrotV_{rot} and velocity dispersion σ\sigma. We show that the logMlogSK\log M_* - \log S_K relation: (1)~is linear above limits set by properties of the samples and observations; (2)~has slightly different slope when derived from stellar or gas kinematic measurements; (3)~applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (logMlogVrot\log M_* - \log V_{rot}) for late types or the Faber-Jackson relation (logMlogσ\log M_* - \log\sigma) for early types; and (4)~has scatter that is only weakly sensitive to the value of KK, with minimum scatter for KK in the range 0.4 and 0.7. We compare SKS_K to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ3\sigma_{3^{\prime\prime}}). We find that while SKS_{K} and σ3\sigma_{3^{\prime\prime}} are in general tightly correlated, the logMlogSK\log M_* - \log S_K relation has less scatter than the logMlogσ3\log M_* - \log \sigma_{3^{\prime\prime}} relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in original form 2019 January
    corecore