5,255 research outputs found
Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions
Analysis of biaxial texture of MgO films grown by ion-beam-assisted deposition (IBAD) has been performed using a quantitative reflection high-energy electron diffraction (RHEED) based method. MgO biaxial texture is determined by analysis of diffraction spot shapes from single RHEED images, and by measuring the width of RHEED in-plane rocking curves for MgO films grown on amorphous Si3N4 by IBAD using 750 eV Ar+ ions, at 45° incidence angle, and MgO e-beam evaporation. RHEED-based biaxial texture measurement accuracy is verified by comparison with in-plane and out-of-plane orientation distribution measurements made using transmission electron microscopy and x-ray rocking curves. In situ RHEED measurements also enable the analysis of the evolution of the biaxial texture which narrows with increasing film thickness. RHEED-based measurements of IBAD MgO biaxial texture show that the minimum in-plane orientation distribution depends on the out-of-plane orientation distribution, and indicates that the minimum obtainable in-plane orientation on distribution is 2°
In-situ biaxial texture analysis of MgO films during growth on amorphous substrates by ion-beam-assisted deposition
We used a kinematical electron scattering model to develop a RHEED based method for performing quantitative analysis of mosaic polycrystalline thin film in-plane and out-of-plain grain orientation distributions. RHEED based biaxial texture measurements are compared to x-ray and transmission electron microscopy measurements to establish the validity of the RHEED analysis method. MgO was grown on amorphous Si3N4 by ion beam-assisted deposition (IBAD) using 750 eV Ar+ ions and MgO e-beam evaporation. The ion/MgO flux ratio was varied between 0.66 and 0.42. In situ RHEED analysis reveals that during nucleation the out-of-plane orientation distribution is very broad (almost random), but narrows very quickly once well-oriented grains reach a critical size. Under optimal conditions a competition between selective sputtering and surface roughening yields a minimum out-of-plane texture at about 100 angstrom, which degrades with increasing film thickness. The narrowest in- plane orientation distribution (5.4 degrees FWHM) was found to be at an ion/MgO flux ratio between 0.55 and 0.51, in good agreement with previous experiments. The systematic offsets between RHEED analysis and x-ray measurements of biaxial texture, coupled with evidence that biaxial texture improves with increasing film thickness, indicates that RHEED is a superior technique for probing surface biaxial texture
Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82
We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the
central region of M82, taken with the Spitzer Infrared Spectrograph. From these
spectra we determined the fluxes and equivalent widths of key diagnostic
features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines,
and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in
six representative regions and analysed the spatial distribution of these lines
and their ratios across the central region. We find a good correlation of the
dust extinction with the CO 1-0 emission. The PAH emission follows closely the
ionization structure along the galactic disk. The observed variations of the
diagnostic PAH ratios across M82 can be explained by extinction effects, within
systematic uncertainties. The 16-18um PAH complex is very prominent, and its
equivalent width is enhanced outwards from the galactic plane. We interpret
this as a consequence of the variation of the UV radiation field. The EWs of
the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude
that shocks in the outflow regions have no measurable influence on the H_2
emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little
variations across the plane, indicating that the dominant stellar population is
evolved (5 - 6 Myr) and well distributed. There is a slight increase of the
ratio with distance from the galactic plane of M82 which we attribute to a
decrease in gas density. Our observations indicate that the star formation rate
has decreased significantly in the last 5 Myr. The quantities of dust and
molecular gas in the central area of the galaxy argue against starvation and
for negative feedback processes, observable through the strong extra-planar
outflows.Comment: 15 pages, 12 figures, 3 tables, ApJ, emulateap
Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations
(abridged) The majority of star-forming galaxies follow a simple empirical
correlation in the star formation rate (SFR) versus stellar mass () plane,
usually referred to as the star formation Main Sequence (MS). Here we combine a
set of hydro-dynamical simulations of interacting galactic disks with
state-of-the-art radiative transfer codes to analyze how the evolution of
mergers is reflected upon the properties of the MS. We present
\textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy
Distribution (SED) code that fits the multi-wavelength, broad-band photometry
of galaxies and derives stellar masses, star formation rates, and geometrical
properties of the dust distribution. We apply this tool to the SEDs of
simulated mergers and compare the derived results with the reference output
from the simulations. Our results indicate that changes in the SEDs of mergers
as they approach coalescence and depart from the MS are related to an evolution
of dust geometry in scales larger than a few hundred parsecs. This is reflected
in a correlation between the specific star formation rate (sSFR), and the
compactness parameter , that parametrizes this geometry and hence
the evolution of dust temperature () with time. As mergers
approach coalescence, they depart from the MS and increase their compactness,
which implies that moderate outliers of the MS are consistent with late-type
mergers. By further applying our method to real observations of Luminous
Infrared Galaxies (LIRGs), we show that the merger scenario is unable to
explain these extreme outliers of the MS. Only by significantly increasing the
gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap
Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease
While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant-microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon
Quantum Energies of Strings in a 2+1 Dimensional Gauge Theory
We study classically unstable string type configurations and compute the
renormalized vacuum polarization energies that arise from fermion fluctuations
in a 2+1 dimensional analog of the standard model. We then search for a minimum
of the total energy (classical plus vacuum polarization energies) by varying
the profile functions that characterize the string. We find that typical string
configurations bind numerous fermions and that populating these levels is
beneficial to further decrease the total energy. Ultimately our goal is to
explore the stabilization of string type configurations in the standard model
through quantum effects.
We compute the vacuum polarization energy within the phase shift formalism
which identifies terms in the Born series for scattering data and Feynman
diagrams. This approach allows us to implement standard renormalization
conditions of perturbation theory and thus yields the unambiguous result for
this non--perturbative contribution to the total energy.Comment: 26 pages, 20 eps-files combined to 8 figures, minor typos corrected.
Version to be published in Nucl. Phys.
Cell Lineage Determination and the Control of Neuronal Identity in the Neural Crest
The diverse cell types of complex tissues such as the blood and the brain are generated from self-renewing, multipotent progenitors called stem cells (for reviews, see Hall and Watt 1989; Potten and Loeffler 1990; Morrison et al. 1997). These stem cells must generate progeny of different phenotypes, in the correct proportions, sequence, and location. The manner in which this is accomplished is not well understood. It is clear that the local microenvironment of stem cells has an important influence on their development, as do transcription factors that act within the cells. However, the manner in which such signals and transcription factors interact to control lineage determination by multipotent stem cells is poorly understood. To address this issue, it is necessary to both alter the expression of transcription factors in stem cells and challenge the cells by altering their environment to determine their state of lineage commitment. There are relatively few experimental systems in which such combined
genetic and cell biological manipulation of stern
cells are feasible
When Analysis Fails: Heuristic Mechanism Design via Self-Correcting Procedures
Computational mechanism design (CMD) seeks to understand how to design game forms that induce desirable outcomes in multi-agent systems despite private information, self-interest and limited computational resources. CMD finds application in many settings, in the public sector for wireless spectrum and airport landing rights, to Internet advertising, to expressive sourcing in the supply chain, to allocating computational resources. In meeting the demands for CMD in these rich domains, we often need to bridge from the theory of economic mechanism design to the practice of deployable, computational mechanisms. A compelling example of this need arises in dynamic combinatorial environments, where classic analytic approaches fail and heuristic, computational approaches are required. In this talk I outline the direction of self-correcting mechanisms, which dynamically modify decisions via “output ironing" to ensure truthfulness and provide a fully computational approach to mechanism design. For an application, I suggest heuristic mechanisms for dynamic auctions in which bids arrive over time and supply may also be uncertain.Engineering and Applied Science
The SAMI Galaxy Survey: mass-kinematics scaling relations
We use data from the Sydney-AAO Multi-object Integral-field spectroscopy
(SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy
stellar mass and the general kinematic parameter that combines rotation velocity and velocity dispersion
. We show that the relation: (1)~is linear above
limits set by properties of the samples and observations; (2)~has slightly
different slope when derived from stellar or gas kinematic measurements;
(3)~applies to both early-type and late-type galaxies and has smaller scatter
than either the Tully-Fisher relation () for late
types or the Faber-Jackson relation () for early types;
and (4)~has scatter that is only weakly sensitive to the value of , with
minimum scatter for in the range 0.4 and 0.7. We compare to the
aperture second moment (the `aperture velocity dispersion') measured from the
integrated spectrum within a 3-arcsecond radius aperture
(). We find that while and
are in general tightly correlated, the relation has less scatter than the relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in
original form 2019 January
- …
