6,288 research outputs found

    Polyelectrolyte-Compression Forces between Spherical DNA Brushes

    Full text link
    Optical tweezers are employed to measure the forces of interaction within a single pair of DNA-grafted colloids in dependence of the molecular weight of the DNA-chains, and the concentration and valence of the surrounding ionic medium. The resulting forces are short-range and set in as the surface-to-surface distance between the colloidal cores reaches the value of the brush height. The measured force-distance dependence is analyzed by means of a theoretical treatment based on the compression of the chains on the surface of the opposite-lying colloid. Quantitative agreement with the experiment is obtained for all parameter combinations.Comment: 4 pages, 4 figures, 1 table; manuscript submitted to Phys. Rev. Let

    Scalar meson mediated nuclear mu-e conversion

    Full text link
    We study the nuclear mu-e conversion in the general framework of the effective Lagrangian approach without referring to any specific realization of the physics beyond the standard model (SM) responsible for lepton flavor violation (LFV). We analyze the role of scalar meson exchange between the lepton and nucleon currents and show its relevance for the coherent channel of mu-e conversion. We show that this mechanism introduces modifications in the predicted mu-e conversion rates in comparison with the conventional direct nucleon mechanism, based on the contact type interactions of the nucleon currents with the LFV leptonic current. We derive from the experimental data lower limits on the mass scales of the generic LFV lepton-quark contact terms and demonstrate that they are more stringent than the similar limits existing in the literature.Comment: 14 pages, 1 figur

    Role of the rho meson in the description of pion electroproduction experiments at JLab

    Full text link
    We study the p(e,e' pi+)n reaction in the framework of an effective Lagrangian approach including nucleon, pi and rho meson degrees of freedom and show the importance of the rho-meson t-pole contribution to sigmaT, the transverse part of cross section. We test two different field representations of the rho meson, vector and tensor, and find that the tensor representation of the rho meson is more reliable in the description of the existing data. In particular, we show that the rho-meson t-pole contribution, including the interference with an effective non-local contact term, sufficiently improves the description of the recent JLab data at invariant mass W less 2.2 GeV and Q2 less 2.5 GeV2/c2. A ``soft'' variant of the strong piNN and rhoNN form factors is also found to be compatible with these data. On the basis of the successful description of both the sigmaL and sigmaT parts of the cross section we discuss the importance of taking into account the sigmaT data when extracting the charge pion form factor Fpi from sigmaL.Comment: 23 pages, 6 figures, accepted for publication in Phys. Rev.

    Direct Test of the Scalar-Vector Lorentz Structure of the Nucleon- and Antinucleon-Nucleus Potential

    Get PDF
    Quantum Hadrodynamics in mean field approximation describes the effective nucleon-nucleus potential (about -50 MeV deep) as resulting from a strong repulsive vector (about 400 MeV) and a strong attractive scalar (about -450 MeV) contribution. This scalar-vector Lorentz structure implies a significant lowering of the threshold for ppˉp\bar{p} photoproduction on a nucleus by about 850 MeV as compared to the free case since charge conjugation reverses the sign of the vector potential contribution in the equation of motion for the pˉ\bar{p} states. It also implies a certain size of the photon induced ppˉp\bar{p} pair creation cross section near threshold which is calculated for a target nucleus 208^{208}Pb. We also indicate a measurable second signature of the ppˉp\bar{p} photoproduction process by estimating the increased cross section for emission of charged pions as a consequence of pˉ\bar{p} annihilation within the nucleus.Comment: 18 pages latex, 5 PS figure

    Relating CP-violating decays to the neutron EDM

    Full text link
    We use the present upper bound on the neutron electric dipole moment to give an estimate for the upper limit of the CP-violating couplings of the η(η)\eta(\eta') meson to the neutron. Using this result, we derive constraints on the CP-violating two-pion decays of the η(η)\eta(\eta'). Our results are relevant for the running and planned GlueX and LHCb measurements of rare meson decays.Comment: NSTAR 2017 conference proceeding

    phi-meson production in proton-antiproton annihilation

    Full text link
    Apparent channel-dependent violations of the OZI rule in nucleon-antinucleon annihilation reactions are discussed in the presence of an intrinsic strangeness component in the nucleon. Admixture of strange-antistrange quark pairs in the nucleon wave function enables the direct coupling to the phi-meson in the annihilation channel without violating the OZI rule. Three forms are considered in this work for the strangeness content of the proton wave function, namely, the uud cluster with a strange-antistrange sea quark component, kaon-hyperon clusters based on a simple chiral quark model, and the pentaquark picture. Nonrelativistic quark model calculations reveal that the strangeness magnetic moment and the strangeness contribution to the proton spin from the first two models are consistent with recent experimental data. For the third model, the uuds subsystem with the configurations FS[31]F[211]S[22] and FS[31]F[31]S[22] leads to negative values for the strangeness magnetic moment and the strangeness contribution to the proton spin. With effective quark line diagrams incorporating the 3P0 quark model we give estimates for the branching ratios of the proton-antiproton annihilation reactions at rest to two mesons. Results for the branching ratios of phi-meson production from atomic proton-antiproton s-wave states are for the first and third model found to be strongly channel dependent, in good agreement with measured rates.Comment: 12 pages, 1 figur

    Strong and Electromagnetic Decays of X(1835) as a Baryonium State

    Full text link
    With the assumption that the recently observed X(1835) is a baryonium state we have studied the strong decays of X(1835)η()π+π,η()π0π0X(1835) \to \eta^{(\prime)} \pi^+ \pi^-, \eta^{(\prime)} \pi^0 \pi^0 and the electromagnetic decay of X(1835)2γX(1835) \to 2\gamma in the framework of effective Lagrangian formalism. In the present investigation we have included the contributions from the iso-singlet light scalar resonances but we have not included the isospin violating effect. Our result for the strong decay of X(1835)ηπ+πX(1835) \to \eta^{\prime} \pi^+ \pi^- is smaller than the observed data. The decay width for the radiative decay of X(1835)2γX(1835) \to 2\gamma is consistent with the assumption that it decays through the glueball. In addition, the width for the strong decay of X(1835)ηπ+πX(1835) \to \eta \pi^+ \pi^- is larger than that of the strong decay of X(1835)ηπ+πX(1835) \to \eta^{\prime} \pi^+ \pi^- due to the large phase space and coupling constant gNNˉηg_{N\bar{N}\eta}. From our investigation, it is not possible to interpret X(1835) as a baryonium.Comment: Corrected typo

    On the two-photon decay width of the sigma meson

    Full text link
    We shortly report on the two-photon decay width of the light σ\sigma-meson interpreted as a quarkonium state. Results are given in dependence on the σ\sigma-mass and the constituent mass of the light quark. The triangle quark-loop diagram, responsible for the two-photon transition, is carefully evaluated: a term in the transition amplitude, often omitted in literature, results in destructive interference with the leading term. As a result we show that the two-photon decay width of the σ\sigma in the quarkonium picture is less than 1 keV for the physical range of parameters.Comment: 6 pages, 4 figure

    Electromagnetic nucleon-delta transition in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.Comment: 25 page
    corecore