973 research outputs found
Two-colorings with many monochromatic cliques in both colors
Color the edges of the n-vertex complete graph in red and blue, and suppose that red k-cliques are fewer than blue k-cliques. We show that the number of red k-cliques is always less than cknk, where ck∈(0, 1) is the unique root of the equation zk=(1-z)k+kz(1-z)k-1. On the other hand, we construct a coloring in which there are at least cknk-O(nk-1) red k-cliques and at least the same number of blue k-cliques. © 2013 Elsevier Inc
On the naturality of the Mathai-Quillen formula
We give an alternative proof for the Mathai-Quillen formula for a Thom form
using its natural behaviour with respect to fiberwise integration. We also
study this phenomenon in general context.Comment: 6 page
The quadrupole moment of slowly rotating fluid balls
In this paper we use the second order formalism of Hartle to study slowly and
rigidly rotating stars with focus on the quadrupole moment of the object. The
second order field equations for the interior fluid are solved numerically for
different classes of possible equations of state and these solutions are then
matched to a vacuum solution that includes the general asymptotically flat
axisymmetric metric to second order, using the Darmois-Israel procedure. For
these solutions we find that the quadrupole moment differs from that of the
Kerr metric, as has also been found for some equations of state in other
studies. Further we consider the post-Minkowskian limit analytically. In the
paper we also illustrate how the relativistic multipole moments can be
calculated from a complex gravitational potential.Comment: 13 pages, 5 figure
The Near-Infrared Number Counts and Luminosity Functions of Local Galaxies
This study presents a wide-field near-infrared (K-band) survey in two fields;
SA 68 and Lynx 2. The survey covers an area of 0.6 deg., complete to
K=16.5. A total of 867 galaxies are detected in this survey of which 175 have
available redshifts. The near-infrared number counts to K=16.5 mag. are
estimated from the complete photometric survey and are found to be in close
agreement with other available studies. The sample is corrected for
incompleteness in redshift space, using selection function in the form of a
Fermi-Dirac distribution. This is then used to estimate the local near-infrared
luminosity function of galaxies. A Schechter fit to the infrared data gives:
M, and Mpc (for H Km/sec/Mpc and q). When
reduced to , this agrees with other available estimates of the local
IRLF. We find a steeper slope for the faint-end of the infrared luminosity
function when compared to previous studies. This is interpreted as due to the
presence of a population of faint but evolved (metal rich) galaxies in the
local Universe. However, it is not from the same population as the faint blue
galaxies found in the optical surveys. The characteristic magnitude
() of the local IRLF indicates that the bright red galaxies ( mag.) have a space density of Mpc and hence,
are not likely to be local objects.Comment: 24 pages, 8 figures, AASTEX 4.0, published in ApJ 492, 45
Uniform tiling with electrical resistors
The electric resistance between two arbitrary nodes on any infinite lattice
structure of resistors that is a periodic tiling of space is obtained. Our
general approach is based on the lattice Green's function of the Laplacian
matrix associated with the network. We present several non-trivial examples to
show how efficient our method is. Deriving explicit resistance formulas it is
shown that the Kagom\'e, the diced and the decorated lattice can be mapped to
the triangular and square lattice of resistors. Our work can be extended to the
random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure
Dielectric formalism and damping of collective modes in trapped Bose-Einstein condensed gases
We present the general dielectric formalism for Bose-Einstein condensed
systems in external potential at finite temperatures. On the basis of a model
arising within this framework as a first approximation in an intermediate
temperature region for large condensate we calculate the damping of low-energy
excitations in the collisionless regime.Comment: 4 pages, no figures, RevTe
Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning
We apply a simple dynamical density functional theory, the
phase-field-crystal (PFC) model, to describe homogeneous and heterogeneous
crystal nucleation in 2d monodisperse colloidal systems and crystal nucleation
in highly compressed Fe liquid. External periodic potentials are used to
approximate inert crystalline substrates in addressing heterogeneous
nucleation. In agreement with experiments in 2d colloids, the PFC model
predicts that in 2d supersaturated liquids, crystalline freezing starts with
homogeneous crystal nucleation without the occurrence of the hexatic phase. At
extreme supersaturations crystal nucleation happens after the appearance of an
amorphous precursor phase both in 2d and 3d. We demonstrate that contrary to
expectations based on the classical nucleation theory, corners are not
necessarily favourable places for crystal nucleation. Finally, we show that
adding external potential terms to the free energy, the PFC theory can be used
to model colloid patterning experiments.Comment: 21 pages, 16 figure
Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation
Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single component hard-sphere fluid. Extending previous work for pure systems (Gránásy L, Pusztai T, Saylor D and Warren J A 2007 Phys. Rev. Lett. 98 art no 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai T, Bortel G and Gránásy L 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombododecahedral, truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model
The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster
On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed
spectrographs saw astronomical first light. This was followed by the first
spectroscopic commissioning run during the dark period of June 1999. We present
here the first hour of extra-galactic spectroscopy taken during these early
commissioning stages: an observation of the Coma cluster of galaxies. Our data
samples the Southern part of this cluster, out to a radius of 1.5degrees and
thus fully covers the NGC 4839 group. We outline in this paper the main
characteristics of the SDSS spectroscopic systems and provide redshifts and
spectral classifications for 196 Coma galaxies, of which 45 redshifts are new.
For the 151 galaxies in common with the literature, we find excellent agreement
between our redshift determinations and the published values. As part of our
analysis, we have investigated four different spectral classification
algorithms: spectral line strengths, a principal component decomposition, a
wavelet analysis and the fitting of spectral synthesis models to the data. We
find that a significant fraction (25%) of our observed Coma galaxies show signs
of recent star-formation activity and that the velocity dispersion of these
active galaxies (emission-line and post-starburst galaxies) is 30% larger than
the absorption-line galaxies. We also find no active galaxies within the
central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our
Coma active galaxies is consistent with that found at higher redshift for the
CNOC1 cluster survey. Beyond the core region, the fraction of bright active
galaxies appears to rise slowly out to the virial radius and are randomly
distributed within the cluster with no apparent correlation with the potential
merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table
- …
