677 research outputs found

    Gaussian noise and time-reversal symmetry in non-equilibrium Langevin models

    Full text link
    We show that in driven systems the Gaussian nature of the fluctuating force and time-reversibility are equivalent properties. This result together with the potential condition of the external force drastically restricts the form of the probability distribution function, which can be shown to satisfy time-independent relations. We have corroborated this feature by explicitly analyzing a model for the stretching of a polymer and a model for a suspension of non-interacting Brownian particles in steady flow.Comment: 6 pages, submitted to PR

    Optimal trap shape for a Bose gas with attractive interactions

    Full text link
    Dilute Bose gas with attractive interactions is considered at zero temperature, when practically all atoms are in Bose-Einstein condensate. The problem is addressed aiming at answering the question: What is the optimal trap shape allowing for the condensation of the maximal number of atoms with negative scattering lengths? Simple and accurate analytical formulas are derived allowing for an easy analysis of the optimal trap shapes. These analytical formulas are the main result of the paper.Comment: Latex file, 21 page

    Representative Ensembles in Statistical Mechanics

    Full text link
    The notion of representative statistical ensembles, correctly representing statistical systems, is strictly formulated. This notion allows for a proper description of statistical systems, avoiding inconsistencies in theory. As an illustration, a Bose-condensed system is considered. It is shown that a self-consistent treatment of the latter, using a representative ensemble, always yields a conserving and gapless theory.Comment: Latex file, 18 page

    Modified semiclassical approximation for trapped Bose gases

    Full text link
    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The results of the modified approach are shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. Effective thermodynamic limit is defined for any confining dimension. The behaviour of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed.Comment: Revtex file, 13 page

    Labour Law Beyond Growth and Productivism: An Introduction

    Get PDF
    This introductory chapter to the edited volume Labour Law Utopias: Post-Growth and Post-Productive Work Approaches explains how the authors in the book use the idea of utopia as a method to offer forward-looking ideas for a more human-centred and green world of work and what that could mean for labour law. After explaining why there is a need for the use of utopias, the authors elaborate on the two approaches that underlie those utopias: post-growth and post-productive work. These approaches have been chosen because they respond to important issues for the future of work and present serious challenges to labour law. The chapter concludes with trends identified by most authors in the book, such as the need for a socioecological labour law and a re-evaluation of the meaning of work; conflicting ideas, such as whether there will be less work or lower economic productivity; and issues for further research, particularly how to realize some ideas of the labour law utopias

    The Chandrasekhar limit for quark stars

    Full text link
    The Chandrasekhar limit for quark stars is evaluated from simple energy balance relations, as proposed by Landau for white dwarfs or neutron stars. It has been found that the limit for quark stars depends on, in addition to the fundamental constants, the Bag constant.Comment: LateX fil

    Quantum many-body dynamics in a Lagrangian frame: II. Geometric formulation of time-dependent density functional theory

    Full text link
    We formulate equations of time-dependent density functional theory (TDDFT) in the co-moving Lagrangian reference frame. The main advantage of the Lagrangian description of many-body dynamics is that in the co-moving frame the current density vanishes, while the density of particles becomes independent of time. Therefore a co-moving observer will see the picture which is very similar to that seen in the equilibrium system from the laboratory frame. It is shown that the most natural set of basic variables in TDDFT includes the Lagrangian coordinate, ξ\bm\xi, a symmetric deformation tensor gμνg_{\mu\nu}, and a skew-symmetric vorticity tensor, FμνF_{\mu\nu}. These three quantities, respectively, describe the translation, deformation, and the rotation of an infinitesimal fluid element. Reformulation of TDDFT in terms of new basic variables resolves the problem of nonlocality and thus allows to regularly derive a local nonadiabatic approximation for exchange correlation (xc) potential. Stationarity of the density in the co-moving frame makes the derivation to a large extent similar to the derivation of the standard static local density approximation. We present a few explicit examples of nonlinear nonadiabatic xc functionals in a form convenient for practical applications.Comment: RevTeX4, 18 pages, Corrected final version. The first part of this work is cond-mat/040835

    Culpa in causa in het criminele milieu

    Get PDF
    corecore