167 research outputs found

    Quantum corrections to critical phenomena in gravitational collapse

    Get PDF
    We investigate conformally coupled quantum matter fields on spherically symmetric, continuously self-similar backgrounds. By exploiting the symmetry associated with the self-similarity the general structure of the renormalized quantum stress-energy tensor can be derived. As an immediate application we consider a combination of classical, and quantum perturbations about exactly critical collapse. Generalizing the standard argument which explains the scaling law for black hole mass, MηηβM \propto |\eta-\eta^*|^\beta, we demonstrate the existence of a quantum mass gap when the classical critical exponent satisfies β0.5\beta \geq 0.5. When β<0.5\beta < 0.5 our argument is inconclusive; the semi-classical approximation breaks down in the spacetime region of interest.Comment: RevTeX, 6 pages, 3 figures included using psfi

    Case management

    No full text
    Provides an overview of methods of diagnosis, treatment and patient care in complex emergencies. This chapter: ■ provides guidelines for initial management, including emergency triage – for the rapid identifi cation and treatment of patients at greatest risk of dying – and clinical assessment ■ discusses confi rmatory diagnosis of malaria using microscopy and rapid diagnostic tests (RDTs) ■ outlines factors that determine the choice of antimalarial drug ■ describes antimalarial drug treatment for uncomplicated malaria, subsequent follow-up, and the management of treatment failures ■ describes the assessment and treatment of anaemia ■ describes the treatment of severe P. falciparum malaria and its associated complications, including resuscitation, treatment with antimalarial drugs, and nursing care ■ provides guidance on the prevention and treatment of malaria in special groups (pregnant women, malnourished patients, returning refugees and displaced persons)

    Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field

    Get PDF
    We examine the gravitational collapse of a non-linear sigma model in spherical symmetry. There exists a family of continuously self-similar solutions parameterized by the coupling constant of the theory. These solutions are calculated together with the critical exponents for black hole formation of these collapse models. We also find that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions become unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available at http://www.physics.ucsb.edu/people/eric_hirschman

    The causal structure of dynamical charged black holes

    Full text link
    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot saymore about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.Comment: 23 pages, 23 figure

    Dynamical formation and evolution of (2+1)-dimensional charged black holes

    Full text link
    In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.Comment: 40 pages, 15 figure

    Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field

    Get PDF
    We study classical and quantum self-similar collapses of a massless scalar field in higher dimensions, and examine how the increase in the number of dimensions affects gravitational collapse and black hole formation. Higher dimensions seem to favor formation of black hole rather than other final states, in that the initial data space for black hole formation enlarges as dimension increases. On the other hand, the quantum gravity effect on the collapse lessens as dimension increases. We also discuss the gravitational collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur

    When do colliding bubbles produce an expanding universe?

    Full text link
    It is intriguing to consider the possibility that the Big Bang of the standard (3+1) dimensional cosmology originated from the collision of two branes within a higher dimensional spacetime, leading to the production of a large amount of entropy. In this paper we study, subject to certain well-defined assumptions, under what conditions such a collision leads to an expanding universe. We assume the absence of novel physics, so that ordinary (4+1) -dimensional Einstein gravity remains a valid approximation. It is necessary that the fifth dimension not become degenerate at the moment of collision. First the case of a symmetric collision of infinitely thin branes having a hyperbolic or flat spatial geometry is considered. We find that a symmetric collision results in a collapsing universe on the final brane unless the pre-existing expansion rate in the bulk just prior to the collision is sufficiently large in comparison to the momentum transfer in the fifth dimension. Such prior expansion may either result from negative spatial curvature or from a positive five-dimensional cosmological constant. The relevance of these findings to the Colliding Bubble Braneworld Universe scenario is discussed. Finally, results from a numerical study of colliding thick-wall branes is presented, which confirm the results of the thin-wall approximation.Comment: 24 pages, 13 figures. Minor changes and references include

    Numerical Relativity: A review

    Full text link
    Computer simulations are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the particular case of General Relativity, numerical models have proved extremely valuable for investigations of strong field scenarios and been crucial to reveal unexpected phenomena. Considerable efforts are being spent to simulate astrophysically relevant simulations, understand different aspects of the theory and even provide insights in the search for a quantum theory of gravity. In the present article I review the present status of the field of Numerical Relativity, describe the techniques most commonly used and discuss open problems and (some) future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and Quantum Gravity. (uses iopart.cls

    Assessing the Quality of Care for Pneumonia in Integrated Community Case Management: A Cross-Sectional Mixed Methods Study

    Get PDF
    Background Pneumonia is the leading infectious cause of mortality in children under five worldwide. Community-level interventions, such as integrated community case management, have great potential to reduce the burden of pneumonia, as well as other diseases, especially in remote populations. However, there are still questions as to whether community health workers (CHW) are able to accurately assess symptoms of pneumonia and prescribe appropriate treatment. This research addresses limitations of previous studies using innovative methodology to assess the accuracy of respiratory rate measurement by CHWs and provides new evidence on the quality of care given for children with symptoms of pneumonia. It is one of few that assesses CHW performance in their usual setting, with independent re-examination by experts, following a considerable period of time post-training of CHWs. Methods In this cross-sectional mixed methods study, 1,497 CHW consultations, conducted by 90 CHWs in two districts of Luapula province, Zambia, were directly observed, with measurement of respiratory rate for children with suspected pneumonia recorded by video. Using the video footage, a retrospective reference standard assessment of respiratory rate was conducted by experts. Counts taken by CHWs were compared against the reference standard and appropriateness of the treatment prescribed by CHWs was assessed. To supplement observational findings, three focus group discussions and nine in depth interviews with CHWs were conducted. Results and Conclusion The findings support existing literature that CHWs are capable of measuring respiratory rates and providing appropriate treatment, with 81% and 78% agreement, respectively, between CHWs and experts. Accuracy in diagnosis could be strengthened through further training and the development of improved diagnostic tools appropriate for resource-poor settings

    Rational use of antibiotics by community health workers and caregivers for children with suspected pneumonia in Zambia: A cross-sectional mixed methods study

    Get PDF
    Background: Antibiotic resistance is an issue of growing global concern. One key strategy to minimise further development of resistance is the rational use of antibiotics, by providers and patients alike. Through integrated community case management (iCCM), children diagnosed with suspected pneumonia are treated with antibiotics; one component of an essential package to reduce child mortality and increase access to health care for remote populations. Through the use of clinical algorithms, supportive supervision and training, iCCM also offers the opportunity to improve the rational use of antibiotics and limit the spread of resistance in resource-poor contexts. This study provides evidence on antibiotic use by community health workers (CHWs) and caregivers to inform iCCM programmes, safeguarding current treatments whilst maximising access to care. Methods: 1497 CHW consultations were directly observed by non-clinical researchers, with measurement of respiratory rate by CHWs recorded by video. Videos were used to conduct a retrospective reference standard assessment of respiratory rate by experts. Fifty-five caregivers whose children were prescribed a 5-day course of antibiotics for suspected pneumonia were followed up on day six to assess adherence through structured interviews and pill counts. Six focus group discussions and nine in depth interviews were conducted with CHWs and caregivers to supplement quantitative findings. Results: The findings indicate that CHWs adhered to treatment guidelines for 92 % of children seen, prescribing treatment corresponding to their assessment. However, only 65 % of antibiotics prescribed were given for children with experts' confirmed fast breathing pneumonia. Qualitative data indicates that CHWs have a good understanding of pneumonia diagnosis, and although caregivers sometimes applied pressure to receive drugs, CHWs stated that treatment decisions were not influenced. 46 % of caregivers were fully adherent and gave their child the full 5-day course of dispersible amoxicillin. If caregivers who gave treatment for 3 to 5 days were considered, adherence increased to 76 %. Conclusions: CHWs are capable of prescribing treatment corresponding to their assessment of respiratory rate. However, rational use of antibiotics could be strengthened through improved respiratory rate assessment, and better diagnostic tools. Furthermore, a shorter course of dispersible amoxicillin could potentially improve caregiver adherence, reducing risk of resistance and cost
    corecore