1,076 research outputs found

    Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate

    No full text
    Self-referencing H+-selective microelectrodes were used to measure extracellular H+ fluxes from horizontal cells isolated from the skate retina. A standing H+ flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H+ flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na+–H+ exchanger. Glutamate decreased H+ flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H+ flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H+ flux. Immunocytochemical localization of the plasmalemma Ca2+–H+-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H+ flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca2+–H+-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neuron

    Critical properties of S=1/2 Heisenberg ladders in magnetic fields

    Full text link
    The critical properties of the S=1/2S=1/2 Heisenberg two-leg ladders are investigated in a magnetic field. Combining the exact diagonalization method and the finite-size-scaling analysis based on conformal field theory, we calculate the critical exponents of spin correlation functions numerically. For a strong interchain coupling, magnetization dependence of the critical exponents shows characteristic behavior depending on the sign of the interchain coupling. We also calculate the critical exponents for the S=1/2S=1/2 Heisenberg two-leg ladder with a diagonal interaction, which is thought as a model Hamiltonian of the organic spin ladder compound Cu2(1,4diazacycloheptane)2Cl4{Cu}_2({1,4-diazacycloheptane})_2{Cl}_4. Numerical results are compared with experimental results of temperature dependence of the NMR relaxation rate 1/T11/T_1.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.

    Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl3_3 in magnetic fields parallel to the bb-axis. The magnetic Bragg peaks which indicate the field-induced N\'{e}el ordering were observed for magnetic field higher than the gap field Hg5.5H_{\rm g}\approx 5.5 T at Q=(h,0,l)Q=(h, 0, l) with odd ll in the aca^*-c^* plane. The spin structure in the ordered phase was determined. The temperature and field dependence of the Bragg peak intensities and the phase boundary obtained were discussed in connection with a recent theory which describes the field-induced N\'{e}el ordering as a Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl

    Neutron Scattering Study of Magnetic Ordering and Excitations in the Doped Spin Gap System Tl(Cu1x_{1-x}Mgx_x)Cl3_3

    Full text link
    Neutron elastic and inelastic scattering measurements have been performed in order to investigate the spin structure and the magnetic excitations in the impurity-induced antiferromagnetic ordered phase of the doped spin gap system Tl(Cu1x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03. The magnetic Bragg reflections indicative of the ordering were observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll below TN=3.45T_{\rm N}=3.45 K. It was found that the spin structure of the impurity-induced antiferromagnetic ordered phase on average in Tl(Cu1x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03 is the same as that of the field-induced magnetic ordered phase for Hb{\pmb H} \parallel b in the parent compound TlCuCl3_3. The triplet magnetic excitation was clearly observed in the aa^*-cc^* plane and the dispersion relations of the triplet excitation were determined along four different directions. The lowest triplet excitation corresponding to the spin gap was observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll, as observed in TlCuCl3_3. It was also found that the spin gap increases steeply below TNT_{\rm N} upon decreasing temperature. This strongly indicates that the impurity-induced antiferromagnetic ordering coexists with the spin gap state in Tl(Cu1x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03.Comment: 24 pages, 7 figures, 11 eps files, revtex style, will appear in Phys. Rev.

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    Coupled Ladders in a Magnetic Field

    Full text link
    We investigate the phase transitions in two-leg ladders systems in the incommensurate phase, for which the gap is destroyed by a magnetic field (hc1<hh_{c1}< h) and the ladder is not yet totally saturated (h<hc2h < h_{c2}). We compute quantitatively the correlation functions as a function of the magnetic field for an isolated strong coupling ladder JJJ_\perp \gg J_\parallel and use it to study the phase transition occuring in a three dimensional array of antiferromagnetically coupled ladders. The three dimensional ordering is in the universality class of Bose condensation of hard core bosons. We compute the critical temperature Tc(h)T_c(h) as well as various physical quantities such as the NMR relaxations rate. TcT_c has an unusual camel-like shape with a local minimum at h=(hc1+hc2)/2h=(h_{c1}+h_{c2})/2 and behaves as Tc(hhc1)2/3T_c \sim (h-h_{c1})^{2/3} for hhc1h\sim h_{c1}. We discuss the experimental consequences for compounds such as Cu_2(C_5H_{12}N_2)_2Cl_4Comment: 11 pages; some misprints corrected + one reference added; to appear in PR

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    Lattice Instability in the Spin-Ladder System under Magnetic Field

    Full text link
    We study theoretically the lattice instability in the spin gap systems under magnetic field. With the magnetic field larger than a critical value h_{c1}, the spin gap is collapsed and the magnetization arises. We found that the lattice distortion occurs in the spin-ladder at an incommensurate wavevector corresponding to the magnetization, while it does not occur in the Haldane system. At low temperatures the magnetization curve shows a first order phase transition with this lattice distortion.Comment: 10 pages, REVTEX, 2 figures(ps file), minor change
    corecore