228 research outputs found

    Evidence for a Common Origin of Blacksmiths and Cultivators in the Ethiopian Ari within the Last 4500 Years: Lessons for Clustering-Based Inference.

    Get PDF
    The Ari peoples of Ethiopia are comprised of different occupational groups that can be distinguished genetically, with Ari Cultivators and the socially marginalised Ari Blacksmiths recently shown to have a similar level of genetic differentiation between them (FST ≈ 0.023 - 0.04) as that observed among multiple ethnic groups sampled throughout Ethiopia. Anthropologists have proposed two competing theories to explain the origins of the Ari Blacksmiths as (i) remnants of a population that inhabited Ethiopia prior to the arrival of agriculturists (e.g. Cultivators), or (ii) relatively recently related to the Cultivators but presently marginalized in the community due to their trade. Two recent studies by different groups analysed genome-wide DNA from samples of Ari Blacksmiths and Cultivators and suggested that genetic patterns between the two groups were more consistent with model (i) and subsequent assimilation of the indigenous peoples into the expanding agriculturalist community. We analysed the same samples using approaches designed to attenuate signals of genetic differentiation that are attributable to allelic drift within a population. By doing so, we provide evidence that the genetic differences between Ari Blacksmiths and Cultivators can be entirely explained by bottleneck effects consistent with hypothesis (ii). This finding serves as both a cautionary tale about interpreting results from unsupervised clustering algorithms, and suggests that social constructions are contributing directly to genetic differentiation over a relatively short time period among previously genetically similar groups

    Inference of population splits and mixtures from genome-wide allele frequency data

    Get PDF
    Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for inferring the patterns of population splits and mixtures in multiple populations. In this model, the sampled populations in a species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration events that we find have been detected previously, many have not. For example, in the human data we infer that Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese) result from admixture between modern toy breeds and "ancient" Asian breeds. Software implementing the model described here, called TreeMix, is available at http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15 figures. This is an updated version of the preprint available at http://precedings.nature.com/documents/6956/version/

    Massive migration from the steppe is a source for Indo-European languages in Europe

    Full text link
    We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe

    Reconstructing Druze population history

    Get PDF
    The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern-Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze

    Early holocenic and historic mtDNA african signatures in the iberian peninsula: The andalusian region as a paradigm

    Get PDF
    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.Financial support was provided by the Spanish Ministry of Competitiveness through Research Project CGL2010-15191/BOS granted to RC and International Mobility Program Acciones Integradas Hispano-Portuguesas (PRI-AIBPT-2011-1004) granted to RC (Spain) and LP (Portugal) (http://www.mineco.gob.es/portal/site/mineco/idi). The E.C. Sixth Framework Programme under Contract n° ERAS-CT-2003-980409 (EUROCORES project of the European Science Foundation) also provided financial support to JMD for North African population research. CLH has a predoctoral fellowship granted by Complutense University. PS is supported by FCT Investigator Programme (IF/01641/2013). IPATIMUP (https://www.ipatimup.pt/) integrates the Instituto the Investigação em Saúde (i3S) Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. IPATIMUP is funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through the FCT - under the project PEst-C/SAU/LA0003/2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks

    Get PDF
    The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yak’s hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using high-density SNP genotyping and whole-genome sequencing. These yaks inherited ~1.3% of their genome from bovine ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding

    Genome-wide fine-scale recombination rate variation in Drosophila melanogaster

    Get PDF
    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity

    MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls

    Get PDF
    Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10−5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects

    The genetic history of Greenlandic-European contact

    Get PDF
    The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago.1 Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.2 In this study, we investigated to what extent different European countries have contributed to this genetic ancestry. We combined dense SNP chip data from 3,972 Greenlanders and 8,275 Europeans from 14 countries and inferred the ancestry contribution from each of these 14 countries using haplotype-based methods. Due to the rapid increase in population size in Greenland over the past ∼100 years, we hypothesized that earlier European interactions, such as pre-colonial Dutch whalers and early German and Danish-Norwegian missionaries, as well as the later Danish colonists and post-colonial immigrants, all contributed European genetic ancestry. However, we found that the European ancestry is almost entirely Danish and that a substantial fraction is from admixture that took place within the last few generations

    The genetic history of Greenlandic-European contact.

    Get PDF
    The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago.1 Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.2 In this study, we investigated to what extent different European countries have contributed to this genetic ancestry. We combined dense SNP chip data from 3,972 Greenlanders and 8,275 Europeans from 14 countries and inferred the ancestry contribution from each of these 14 countries using haplotype-based methods. Due to the rapid increase in population size in Greenland over the past ∼100 years, we hypothesized that earlier European interactions, such as pre-colonial Dutch whalers and early German and Danish-Norwegian missionaries, as well as the later Danish colonists and post-colonial immigrants, all contributed European genetic ancestry. However, we found that the European ancestry is almost entirely Danish and that a substantial fraction is from admixture that took place within the last few generations
    corecore