1,846 research outputs found

    Forecast of Total Electron Content over Europe for disturbed ionospheric Conditions

    Get PDF
    A general picture of the occurrence of ionospheric storms as function of local time, season and location is known from numerous studies over the past 50 years. Nevertheless, it is not yet possible to say how the ionosphere will actually respond to a given space weather event because the measurements of the onset time, location of maximum perturbation, amplitude and type of storm (positive or negative) deviate much from the climatology. However, statistical analyses of numerous storm events observed in the Total Electron Content (TEC) since 1995 enable to estimate and predict a most probable upcoming perturbed TEC over Europe based on forecasts of geomagnetic activity. A first approach will be presented here. The forecast of perturbed TEC is part of the Forecast System Ionosphere build under the umbrella of the FP7 project AFFECTS∗ (Advanced Forecast For Ensuring Communication Through Space). It aims to help users mitigating the impact on communication system

    A new global model for the ionospheric F2 peak height for radio wave propagation

    Get PDF
    The F2-layer peak density height <I>hm</I>F2 is one of the most important ionospheric parameters characterizing HF propagation conditions. Therefore, the ability to model and predict the spatial and temporal variations of the peak electron density height is of great use for both ionospheric research and radio frequency planning and operation. For global <I>hm</I>F2 modelling we present a nonlinear model approach with 13 model coefficients and a few empirically fixed parameters. The model approach describes the temporal and spatial dependencies of <I>hm</I>F2 on global scale. For determining the 13 model coefficients, we apply this model approach to a large quantity of global <I>hm</I>F2 observational data obtained from GNSS radio occultation measurements onboard CHAMP, GRACE and COSMIC satellites and data from 69 worldwide ionosonde stations. We have found that the model fits to these input data with the same root mean squared (RMS) and standard deviations of 10%. In comparison with the electron density NeQuick model, the proposed Neustrelitz global <I>hm</I>F2 model (Neustrelitz Peak Height Model – NPHM) shows percentage RMS deviations of about 13% and 12% from the observational data during high and low solar activity conditions, respectively, whereas the corresponding deviations for the NeQuick model are found 18% and 16%, respectively

    Temporal and spatial distribution of phytoplankton with emphasis on Skeletonema costatum in the Mathamuhuri river – estuary (Chakaria mangrove ecosystem), Bangladesh

    Get PDF
    A total of 91 species under 44 genera were identified among the phytoplankton community during the course of one year's investigation between May 1982 and April 1983. Bacillariophyta was the most dominant group with 72 specie, Chlorophyta 11 spp, Cyanophyta 6 spp and Pyrrophyta was represented by 2 species. The yearly percentage composition of 4 groups of phytoplankton in order of abundance were Bacillariophyta 50.77%, Cyanophyta 47.70%, Chlorophyta 1.5% and Pyrrophyta 0.02%. The highest densities of phytoplankton were recorded in monsoon months (June-July) with a peak in July (31550 cells/l) and the minimum in February (770 cells/1). Higher concentration of phytoplankton was recorded at station 2, nearer to the Chakaria Sundarbans (mangroves), but abundance of phytoplankton showed no significant difference in the two stations (Mann Whitney U test, P=0.64, Z=-0.642, U=64). Phytoplankton population in this area were positively correlated with rainfall (r=0.655, P=<0.5, df.22) and water temperature (r=0.523, P=<0.05). Skeletonema costatum was the dominant member of phytoplankton and occupied 35.23% of the annual population and occurred throughout the period of study except in September and January. Its abundance was recorded during the monsoon months (April- July) with a maximum density (24185 cells/l) in July. No significant correlation was found between abundance of S. costatum and the hydro-meteorological parameters recorded in the Chakaria mangrove area

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed

    Temperature profile of produced gas in oil palm biomass fluidized bed gasifier: effect of fibre/shell composition ratio

    Get PDF
    Malaysia is known to be one of the largest palm oil producers and also generates huge amounts of oil palm biomass, which is mainly treated as bio waste. One of the efficient methods to recycle this potential oil palm biomass could be gasification technology. Gasification is a process involving conversion of solid carbonaceous fuel into combustible gas using directly heated biomass. From processing of Fresh Fruit Bunch (FFB) (a biomass example), Empty Fruit Bunch (EFB) fibre, shell etc. are produced. In this study, a laboratory scale fluidized bed was developed, an appropriate fibre/shell composition ratio was studied and analysis on profiles of gas produced in the oil palm biomass fluidized bed gasifier was conducted. The effects of fibre/shell composition ratio and rate of reaction on temperature profiles were investigated. Temperature reaction rate and calorific value of oil palm biomass with gas compositions were also analyzed
    corecore