1,284 research outputs found
Evidence of ratchet effect in nanowires of a conducting polymer
Ratchet effect, observed in many systems starting from living organism to
artificially designed device, is a manifestation of motion in asymmetric
potential. Here we report results of a conductivity study of Polypyrrole
nanowires, which have been prepared by a simple method to generate a variation
of doping concentration along the length. This variation gives rise to an
asymmetric potential profile that hinders the symmetry of the hopping process
of charges and hence the value of measured resistance of these nanowires become
sensitive to the direction of current flow. The asymmetry in resistance was
found to increase with decreasing nanowire diameter and increasing temperature.
The observed phenomena could be explained with the assumption that the spatial
extension of localized state involved in hopping process reduces as the doping
concentration reduces along the length of the nanowires.Comment: Revtex, two column, 4 pages, 10 figure
New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations
We propose new effective inter-nucleon forces with a finite-range three-body
operator. The proposed forces are suitable for describing the nuclear structure
properties over a wide mass number region, including the saturation point of
nuclear matter. The forces are applied to microscopic calculations of
() nuclei and O isotopes with a method of antisymmetrized molecular
dynamics. We present the characteristics of the forces and discuss the
importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.
Quantum limits of super-resolution in reconstruction of optical objects
We investigate analytically and numerically the role of quantum fluctuations
in reconstruction of optical objects from diffraction-limited images. Taking as
example of an input object two closely spaced Gaussian peaks we demonstrate
that one can improve the resolution in the reconstructed object over the
classical Rayleigh limit. We show that the ultimate quantum limit of resolution
in such reconstruction procedure is determined not by diffraction but by the
signal-to-noise ratio in the input object. We formulate a quantitative measure
of super-resolution in terms of the optical point-spread function of the
system.Comment: 23 pages, 7 figures. Submitted to Physical Review A e-mail:
[email protected]
Non-Relativistic Superstrings: A New Soluble Sector of AdS_5xS^5
We find a new sector of string theory in AdS_5xS^5 describing
non-relativistic superstrings in that geometry. The worldsheet theory of
non-relativistic strings in AdS_5xS^5 is derived and shown to reduce to a
supersymmetric free field theory in AdS_2. Non-relativistic string theory
provides a new calculable setting in which to study holography.Comment: 29 pages, LATEX forma
Hamiltonian Formalism for Space-time Non-commutative Theories
Space-time non-commutative theories are non-local in time. We develop the
Hamiltonian formalism for non-local field theories in d space-time dimensions
by considering auxiliary d+1 dimensional field theories which are local with
respect to the evolution time. The Hamiltonian path integral quantization is
considered and the Feynman rules in the Lagrangian formalism are derived. The
case of non-commutative \phi^3 theory is considered as an example.Comment: 6 pages, A new section is added with other comments and references.
To appear in PR
Fermi arc in doped high-Tc cuprates
We propose a -density wave induced by the spin-orbit coupling in the CuO
plane. The spectral function of high-temperature superconductors in the under
doped and lightly doped regions is calculated in order to explain the Fermi arc
spectra observed recently by angle-resolved photoemission spectroscopy. We take
into account the tilting of CuO octahedra as well as the on-site
Coulombrepulsive interaction; the tilted octahedra induce the staggered
transfer integral between orbitals and Cu orbitals, and
bring about nontrivial effects of spin-orbit coupling for the electrons in
the CuO plane. The spectral weight shows a peak at around (,) for
light doping and extends around this point forming an arc as the carrier
density increases, where the spectra for light doping grow continuously to be
the spectra in the optimally doped region. This behavior significantly agrees
with that of the angle-resolved photoemissionspectroscopy spectra. Furthermore,
the spin-orbit term and staggered transfer effectively induce a flux state, a
pseudo-gap with time-reversal symmetry breaking. We have a nodal metallic state
in the light-doping case since the pseudogap has a symmetry.Comment: 5 pages, 7 figure
State Dependent Effective Interaction for the Hyperspherical Formalism
The method of effective interaction, traditionally used in the framework of
an harmonic oscillator basis, is applied to the hyperspherical formalism of
few-body nuclei (A=3-6). The separation of the hyperradial part leads to a
state dependent effective potential. Undesirable features of the harmonic
oscillator approach associated with the introduction of a spurious confining
potential are avoided. It is shown that with the present method one obtains an
enormous improvement of the convergence of the hyperspherical harmonics series
in calculating ground state properties, excitation energies and transitions to
continuum states.Comment: LaTeX, 16 pages, 8 ps figure
Gauge transformations and symmetries of integrable systems
We analyze several integrable systems in zero-curvature form within the
framework of invariant gauge theory. In the Drienfeld-Sokolov gauge
we derive a two-parameter family of nonlinear evolution equations which as
special cases include the Kortweg-de Vries (KdV) and Harry Dym equations. We
find residual gauge transformations which lead to infinintesimal symmetries of
this family of equations. For KdV and Harry Dym equations we find an infinite
hierarchy of such symmetry transformations, and we investigate their relation
with local conservation laws, constants of the motion and the bi-Hamiltonian
structure of the equations. Applying successive gauge transformatinos of Miura
type we obtain a sequence of gauge equivalent integrable systems, among them
the modified KdV and Calogero KdV equations.Comment: 18pages, no figure Journal versio
- …
