1,284 research outputs found

    Evidence of ratchet effect in nanowires of a conducting polymer

    Get PDF
    Ratchet effect, observed in many systems starting from living organism to artificially designed device, is a manifestation of motion in asymmetric potential. Here we report results of a conductivity study of Polypyrrole nanowires, which have been prepared by a simple method to generate a variation of doping concentration along the length. This variation gives rise to an asymmetric potential profile that hinders the symmetry of the hopping process of charges and hence the value of measured resistance of these nanowires become sensitive to the direction of current flow. The asymmetry in resistance was found to increase with decreasing nanowire diameter and increasing temperature. The observed phenomena could be explained with the assumption that the spatial extension of localized state involved in hopping process reduces as the doping concentration reduces along the length of the nanowires.Comment: Revtex, two column, 4 pages, 10 figure

    New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations

    Full text link
    We propose new effective inter-nucleon forces with a finite-range three-body operator. The proposed forces are suitable for describing the nuclear structure properties over a wide mass number region, including the saturation point of nuclear matter. The forces are applied to microscopic calculations of Z=NZ=N (A40A\le 40) nuclei and O isotopes with a method of antisymmetrized molecular dynamics. We present the characteristics of the forces and discuss the importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.

    Quantum limits of super-resolution in reconstruction of optical objects

    Full text link
    We investigate analytically and numerically the role of quantum fluctuations in reconstruction of optical objects from diffraction-limited images. Taking as example of an input object two closely spaced Gaussian peaks we demonstrate that one can improve the resolution in the reconstructed object over the classical Rayleigh limit. We show that the ultimate quantum limit of resolution in such reconstruction procedure is determined not by diffraction but by the signal-to-noise ratio in the input object. We formulate a quantitative measure of super-resolution in terms of the optical point-spread function of the system.Comment: 23 pages, 7 figures. Submitted to Physical Review A e-mail: [email protected]

    Non-Relativistic Superstrings: A New Soluble Sector of AdS_5xS^5

    Full text link
    We find a new sector of string theory in AdS_5xS^5 describing non-relativistic superstrings in that geometry. The worldsheet theory of non-relativistic strings in AdS_5xS^5 is derived and shown to reduce to a supersymmetric free field theory in AdS_2. Non-relativistic string theory provides a new calculable setting in which to study holography.Comment: 29 pages, LATEX forma

    Hamiltonian Formalism for Space-time Non-commutative Theories

    Get PDF
    Space-time non-commutative theories are non-local in time. We develop the Hamiltonian formalism for non-local field theories in d space-time dimensions by considering auxiliary d+1 dimensional field theories which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutative \phi^3 theory is considered as an example.Comment: 6 pages, A new section is added with other comments and references. To appear in PR

    Fermi arc in doped high-Tc cuprates

    Full text link
    We propose a dd-density wave induced by the spin-orbit coupling in the CuO plane. The spectral function of high-temperature superconductors in the under doped and lightly doped regions is calculated in order to explain the Fermi arc spectra observed recently by angle-resolved photoemission spectroscopy. We take into account the tilting of CuO octahedra as well as the on-site Coulombrepulsive interaction; the tilted octahedra induce the staggered transfer integral between px,yp_{x,y} orbitals and Cu t2gt_{2g} orbitals, and bring about nontrivial effects of spin-orbit coupling for the dd electrons in the CuO plane. The spectral weight shows a peak at around (π/2\pi/2,π/2\pi/2) for light doping and extends around this point forming an arc as the carrier density increases, where the spectra for light doping grow continuously to be the spectra in the optimally doped region. This behavior significantly agrees with that of the angle-resolved photoemissionspectroscopy spectra. Furthermore, the spin-orbit term and staggered transfer effectively induce a flux state, a pseudo-gap with time-reversal symmetry breaking. We have a nodal metallic state in the light-doping case since the pseudogap has a dx2y2d_{x^2-y^2} symmetry.Comment: 5 pages, 7 figure

    State Dependent Effective Interaction for the Hyperspherical Formalism

    Get PDF
    The method of effective interaction, traditionally used in the framework of an harmonic oscillator basis, is applied to the hyperspherical formalism of few-body nuclei (A=3-6). The separation of the hyperradial part leads to a state dependent effective potential. Undesirable features of the harmonic oscillator approach associated with the introduction of a spurious confining potential are avoided. It is shown that with the present method one obtains an enormous improvement of the convergence of the hyperspherical harmonics series in calculating ground state properties, excitation energies and transitions to continuum states.Comment: LaTeX, 16 pages, 8 ps figure

    Gauge transformations and symmetries of integrable systems

    Full text link
    We analyze several integrable systems in zero-curvature form within the framework of SL(2,R)SL(2,\R) invariant gauge theory. In the Drienfeld-Sokolov gauge we derive a two-parameter family of nonlinear evolution equations which as special cases include the Kortweg-de Vries (KdV) and Harry Dym equations. We find residual gauge transformations which lead to infinintesimal symmetries of this family of equations. For KdV and Harry Dym equations we find an infinite hierarchy of such symmetry transformations, and we investigate their relation with local conservation laws, constants of the motion and the bi-Hamiltonian structure of the equations. Applying successive gauge transformatinos of Miura type we obtain a sequence of gauge equivalent integrable systems, among them the modified KdV and Calogero KdV equations.Comment: 18pages, no figure Journal versio
    corecore