12 research outputs found
Flow and use of information at the National Space Science Data Center
Information flow and dissemination at space science data cente
Electron-phonon coupling induced pseudogap and the superconducting transition in Ba0.67K0.33BiO3
We study the single particle density of states (DOS) across the
superconducting transition (Tc = 31 K) in single-crystal Ba0.67K0.33BiO3 using
ultrahigh resolution angle-integrated photoemission spectroscopy. The
superconducting gap opens with a pile-up in the DOS, Delta(5.3 K) = 5.2 meV and
2Delta(0)/kBTc = 3.9. In addition, we observe a pseudogap below and above Tc,
occurring as a suppression in intensity over an energy scale up to the
breathing mode phonon(~ 70 meV). The results indicate electron-phonon coupling
induces a pseudogap in Ba0.67K0.33BiO3.Comment: 5 pages with 4 figures, submitted to Phys. Rev. Let
Doping Dependence of the Electronic Structure of Ba_{1-x}K_{x}BiO_{3} Studied by X-Ray Absorption Spectroscopy
We have performed x-ray absorption spectroscopy (XAS) and x-ray photoemission
spectroscopy (XPS) studies of single crystal Ba_{1-x}K_{x}BiO_{3} (BKBO)
covering the whole composition range . Several features in
the oxygen 1\textit{s} core XAS spectra show systematic changes with .
Spectral weight around the absorption threshold increases with hole doping and
shows a finite jump between and 0.40, which signals the
metal-insulator transition. We have compared the obtained results with
band-structure calculations. Comparison with the XAS results of
BaPb_{1-x}Bi_{x}O_{3} has revealed quite different doping dependences between
BKBO and BPBO. We have also observed systematic core-level shifts in the XPS
spectra as well as in the XAS threshold as functions of , which can be
attributed to a chemical potential shift accompanying the hole doping. The
observed chemical potential shift is found to be slower than that predicted by
the rigid band model based on the band-structure calculations.Comment: 8 pages, 8 figures include
