420 research outputs found
The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization
We investigate the role played by nonequilibrium dynamical screening in the
thermalization of carriers in a simplified two-component two-band model of a
semiconductor. The main feature of our approach is the theoretically sound
treatment of collisions. We abandon Fermi's Golden rule in favor of a
nonequilibrium field theoretic formalism as the former is applicable only in
the long-time regime. We also introduce the concept of nonequilibrium dynamical
screening. The dephasing of excitonic quantum beats as a result of
carrier-carrier scattering is brought out. At low densities it is found that
the dephasing times due to carrier-carrier scattering is in picoseconds and not
femtoseconds, in agreement with experiments. The polarization dephasing rates
are computed as a function of the excited carrier density and it is found that
the dephasing rate for carrier-carrier scattering is proportional to the
carrier density at ultralow densities. The scaling relation is sublinear at
higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon
request; Submitted to Phys. Rev.
Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields
The interaction potential of a two-dimensional system of excitons with
spatially separated electron-hole layers is considered in the strong magnetic
field limit. The excitons are assumed to have free dynamics in the -
plane, while being constrained or `polarized' in the direction. The model
simulates semiconductor double layer systems under strong magnetic field normal
to the layers. The {\em residual} interaction between excitons exhibits
interesting features, arising from the coupling of the center-of-mass and
internal degrees of freedom of the exciton in the magnetic field. This coupling
induces a dynamical dipole moment proportional to the center-of-mass magnetic
moment of the exciton. We show the explicit dependence of the inter-exciton
potential matrix elements, and discuss the underlying physics. The unusual
features of the interaction potential would be reflected in the collective
response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi
Steep anomalous dispersion in coherently prepared Rb vapor
Steep dispersion of opposite signs in driven degenerate two-level atomic
transitions have been predicted and observed on the D2 line of 87Rb in an
optically thin vapor cell. The intensity dependence of the anomalous dispersion
has been studied. The maximum observed value of anomalous dispersion [dn/dnu ~=
-6x10^{-11}Hz^{-1}] corresponds to anegative group velocity V_g ~= -c/23000.Comment: 4 pages, 4 figure
Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons
Two light pulses propagating with ultra-slow group velocities in a coherently
prepared atomic gas exhibit dissipation-free nonlinear coupling of an
unprecedented strength. This enables a single-photon pulse to coherently
control or manipulate the quantum state of the other. Processes of this kind
result in generation of entangled states of radiation field and open up new
prospectives for quantum information processing
Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs
The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data
Quasiparticle properties of a coupled quantum wire electron-phonon system
We study leading-order many-body effects of longitudinal optical (LO) phonons
on electronic properties of one-dimensional quantum wire systems. We calculate
the quasiparticle properties of a weakly polar one dimensional electron gas in
the presence of both electron-phonon and electron-electron interactions. The
leading-order dynamical screening approximation (GW approximation) is used to
obtain the electron self-energy, the quasiparticle spectral function, and the
quasiparticle damping rate in our calculation by treating electrons and phonons
on an equal footing. Our theory includes effects (within the random phase
approximation) of Fermi statistics, Landau damping, plasmon-phonon mode
coupling, phonon renormalization, dynamical screening, and impurity scattering.
In general, electron-electron and electron-phonon many-body renormalization
effects are found to be nonmultiplicative and nonadditive in our theoretical
results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose
Evaluation Of A Group Cognitive-Behavioral Depression Prevention Program For Young Adolescents: A Randomized Effectiveness Trial
Depression is a common psychological problem in adolescence. Recent research suggests that group cognitive-behavioral interventions can reduce and prevent symptoms of depression in youth. Few studies have tested the effectiveness of such interventions when delivered by school teachers and counselors (as opposed to research team staff). We evaluated the effectiveness of the Penn Resiliency Program for adolescents (PRP-A), a school-based group intervention that targets cognitive behavioral risk factors for depression. We randomly assigned 408 middle school students (ages 10–15) to one of three conditions: PRP-A, PRP-AP (in which adolescents participated in PRP-A and parents were invited to attend a parent intervention component), or a school-as-usual control. Adolescents completed measures of depression and anxiety symptoms, cognitive style, and coping at baseline, immediately after the intervention, and at 6-month follow-up. PRP-A reduced depression symptoms relative to the school as usual control. Baseline levels of hopelessness moderated intervention effects. Among participants with average and high levels of hopelessness, PRP (A and AP) significantly improved depression symptoms, anxiety symptoms, hopelessness, and active coping relative to control. Among participants with low baseline hopelessness, we found no intervention effects. PRP-AP was not more effective than PRP-A alone. We found no intervention effects on clinical levels of depression or anxiety. These findings suggest that cognitive-behavioral interventions can be beneficial when delivered by school teachers and counselors. These interventions may be most helpful to students with elevated hopelessness
Mapping photonic entanglement into and out of a quantum memory
Recent developments of quantum information science critically rely on
entanglement, an intriguing aspect of quantum mechanics where parts of a
composite system can exhibit correlations stronger than any classical
counterpart. In particular, scalable quantum networks require capabilities to
create, store, and distribute entanglement among distant matter nodes via
photonic channels. Atomic ensembles can play the role of such nodes. So far, in
the photon counting regime, heralded entanglement between atomic ensembles has
been successfully demonstrated via probabilistic protocols. However, an
inherent drawback of this approach is the compromise between the amount of
entanglement and its preparation probability, leading intrinsically to low
count rate for high entanglement. Here we report a protocol where entanglement
between two atomic ensembles is created by coherent mapping of an entangled
state of light. By splitting a single-photon and subsequent state transfer, we
separate the generation of entanglement and its storage. After a programmable
delay, the stored entanglement is mapped back into photonic modes with overall
efficiency of 17 %. Improvements of single-photon sources together with our
protocol will enable "on demand" entanglement of atomic ensembles, a powerful
resource for quantum networking.Comment: 7 pages, and 3 figure
Complete quantum teleportation with a Kerr nonlinearity
We present a scheme for the quantum teleportation of the polarization state
of a photon employing a cross-Kerr medium. The experimental feasibility of the
scheme is discussed and we show that, using the recently demonstrated ultraslow
light propagation in cold atomic media, our proposal can be realized with
presently available technology.Comment: 4 pages, revtex, 1 eps figur
Quantum memory for photons: I. Dark state polaritons
An ideal and reversible transfer technique for the quantum state between
light and metastable collective states of matter is presented and analyzed in
detail. The method is based on the control of photon propagation in coherently
driven 3-level atomic media, in which the group velocity is adiabatically
reduced to zero. Form-stable coupled excitations of light and matter
(``dark-state polaritons'') associated with the propagation of quantum fields
in Electromagnetically Induced Transparency are identified, their basic
properties discussed and their application for quantum memories for light
analyzed.Comment: 13 pages, 6 figures, paragraph on photon echo adde
- …
