175 research outputs found
Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut
Fish larval development, not least the spectacular
process of flatfish metamorphosis, appears to be
under complex endocrine control, many aspects of
which are still not fully elucidated. In order to obtain
data on the functional development of two major
endocrine glands, the pituitary and the thyroid, during
flatfish metamorphosis, histology, immunohistochemistry
and in situ hybridization techniques were applied on
larvae of the Atlantic halibut (Hippoglossus hippoglossus),
a large, marine flatfish species, from hatching
through metamorphosis. The material was obtained
from a commercial hatchery. Larval age is defined as
day-degrees (D =accumulated daily temperature from
hatching). Sporadic thyroid follicles are first detected in
larvae at 142 D (27 days post-hatch), prior to the
completion of yolk sack absorption. Both the number
and activity of the follicles increase markedly after yolk
sack absorption and continue to do so during subsequent
development. The larval triiodothyronine (T3)
and thyroxine (T4) content increases, subsequent to yolk
absorption, and coincides with the proliferation of thyroid
follicles. A second increase of both T3 and T4 occurs
around the start of metamorphosis and the T3 content
further increases at the metamorphic climax. Overall,
the T3 content is lower than T4. The pituitary gland can
first be distinguished as a separate organ at the yolk sack
stage. During subsequent development, the gland becomes
more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia
(PI). The first sporadic endocrine pituitary cells are observed
at the yolk sack stage, somatotrophs (growth
hormone producing cells) and somatolactotrophs (somatolactin
producing cells) are first observed at 121 D
(23 days post-hatch), and lactotrophs (prolactin producing
cells) at 134 D (25 days post-hatch). Scarce
thyrotrophs are evident after detection of the first thyroid
follicles (142 D ), but coincident with a phase in
which follicle number and activity increase (260 D ).
The somatotrophs are clustered in the medium ventral
region of the PD, lactotrophs in the anterior part of the
PD and somatolactotrophs are scattered in the mid and
posterior region of the pituitary. At around 600 D ,
coinciding with the start of metamorphosis, somatolactotrophs
are restricted to the interdigitating tissue of the
NH. During larval development, the pituitary endocrine
cells become more numerous. The present data on thyroid
development support the notion that thyroid hormones
may play a significant role in Atlantic halibut
metamorphosis. The time of appearance and the subsequent
proliferation of pituitary somatotrophs, lactotrophs,
somatolactotrophs and thyrotrophs indicate at
which stages of larval development and metamorphosis
these endocrine cells may start to play active regulatory
roles.This work has been carried out within the
projects ‘‘Endocrine Control as a Determinant of Larval Quality in
Fish Aquaculture’’ (CT-96-1422) and ‘‘Arrested development: The
Molecular and Endocrine Basis of Flatfish Metamorphosis’’
(Q5RS-2002-01192), with financial support from the Commission
of the European Communities. However, it does not necessarily
reflect the Commission’s views and in no way anticipates its future
policy in this area. This project was further supported by the
Swedish Council for Agricultural and Forestry Research and Pluriannual
funding to CCMAR by the Portuguese Science and
Technology Council
Consensus Paper: Cerebellar Development
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum
Effect of dentinal surface preparation on bond strength of self-etching adhesive systems
Iodine deficiency and thyroid nodular pathology - epidemiological and cancer characteristics in different populations: Portugal and South Africa
Efficacy of dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes undergoing hemodialysis
Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin
Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum
Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd) trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders
Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression
Expression of Foxm1 Transcription Factor in Cardiomyocytes Is Required for Myocardial Development
Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1−/− mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1fl/f mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1fl/fl hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1fl/fl hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B1, Plk-1, nMyc and p21cip1. In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth
- …
