92 research outputs found
Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning
Several applications exist in which lattice Boltzmann methods (LBM) are used
to compute stationary states of fluid motions, particularly those driven or
modulated by external forces. Standard LBM, being explicit time-marching in
nature, requires a long time to attain steady state convergence, particularly
at low Mach numbers due to the disparity in characteristic speeds of
propagation of different quantities. In this paper, we present a preconditioned
generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate
steady state convergence to flows driven by external forces. The use of
multiple relaxation times in the GLBE allows enhancement of the numerical
stability. Particular focus is given in preconditioning external forces, which
can be spatially and temporally dependent. In particular, correct forms of
moment-projections of source/forcing terms are derived such that they recover
preconditioned Navier-Stokes equations with non-uniform external forces. As an
illustration, we solve an extended system with a preconditioned lattice kinetic
equation for magnetic induction field at low magnetic Prandtl numbers, which
imposes Lorentz forces on the flow of conducting fluids. Computational studies,
particularly in three-dimensions, for canonical problems show that the number
of time steps needed to reach steady state is reduced by orders of magnitude
with preconditioning. In addition, the preconditioning approach resulted in
significantly improved stability characteristics when compared with the
corresponding single relaxation time formulation.Comment: 47 pages, 21 figures, for publication in Journal of Computational
Physic
Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow
In this paper, three-dimensional (3D) multi-relaxation time (MRT)
lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to
the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT
models the rates of relaxation processes owing to collisions of particle
populations may be independently adjusted. As a result, the MRT models offer a
significant improvement in numerical stability of the LB method for simulating
fluids with lower viscosities. We show through the Chapman-Enskog multiscale
analysis that the continuum limit behavior of 3D MRT LB models corresponds to
that of the macroscopic dynamical equations for multiphase flow. We extend the
3D MRT LB models developed to represent multiphase flow with reduced
compressibility effects. The multiphase models are evaluated by verifying the
Laplace-Young relation for static drops and the frequency of oscillations of
drops. The results show satisfactory agreement with available data and
significant gains in numerical stability.Comment: Accepted for publication in the Journal of Computational Physic
Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005
Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station
International audienceA precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio inprimary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 105antiproton events and 2.42 × 109 proton events. The fluxes and flux ratios of charged elementary particlesin cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton ¯p, protonp, and positron eþ fluxes are found to have nearly identical rigidity dependence and the electron e− fluxexhibits a different rigidity dependence. Below 60 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios eachreaches a maximum. From ∼60 to ∼500 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios show no rigiditydependence. These are new observations of the properties of elementary particles in the cosmos
Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.</p
Mu2e Technical Design Report
The Mu2e experiment at Fermilab will search for charged lepton flavor
violation via the coherent conversion process mu- N --> e- N with a sensitivity
approximately four orders of magnitude better than the current world's best
limits for this process. The experiment's sensitivity offers discovery
potential over a wide array of new physics models and probes mass scales well
beyond the reach of the LHC. We describe herein the preliminary design of the
proposed Mu2e experiment. This document was created in partial fulfillment of
the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution
available at http://mu2e.fnal.gov; corrected typo in background summary,
Table 3.
High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station
A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200GeV the positron fraction no longer exhibits an increase with energy.</p
Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law RΔ with index Δ = −0.333 +/- 0.014(fit) +/- 0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ = −1/3 asymptotically.</p
- …
