1,355 research outputs found
The size-star formation relation of massive galaxies at 1.5<z<2.5
We study the relation between size and star formation activity in a complete
sample of 225 massive (M > 5 x 10^10 Msun) galaxies at 1.5<z<2.5, selected from
the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis
model fits to the observed restframe UV-NIR SEDs, and independent MIPS 24
micron observations, 65% of galaxies are actively forming stars, while 35% are
quiescent. Using sizes derived from 2D surface brightness profile fits to high
resolution (FWHM_{PSF}~0.45 arcsec) groundbased ISAAC data, we confirm and
improve the significance of the relation between star formation activity and
compactness found in previous studies, using a large, complete mass-limited
sample. At z~2, massive quiescent galaxies are significantly smaller than
massive star forming galaxies, and a median factor of 0.34+/-0.02 smaller than
galaxies of similar mass in the local universe. 13% of the quiescent galaxies
are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than 5
times smaller than galaxies of similar mass locally. The quiescent galaxies
span a Kormendy relation which, compared to the relation for local early types,
is shifted to smaller sizes and brighter surface brightnesses and is
incompatible with passive evolution. The progenitors of the quiescent galaxies,
were likely dominated by highly concentrated, intense nuclear star bursts at
z~3-4, in contrast to star forming galaxies at z~2 which are extended and
dominated by distributed star formation.Comment: 6 pages, 4 figures, accepted for publication in Ap
High-precision Photometric Redshifts from Spitzer/IRAC: Extreme [3.6]-[4.5] Colors Identify Galaxies in the Redshift Range z~6.6-6.9
One of the most challenging aspects of studying galaxies in the z>~7 universe
is the infrequent confirmation of their redshifts through spectroscopy, a
phenomenon thought to occur from the increasing opacity of the intergalactic
medium to Lya photons at z>6.5. The resulting redshift uncertainties inhibit
the efficient search for [C II] in z~7 galaxies with sub-mm instruments such as
ALMA, given their limited scan speed for faint lines. One means by which to
improve the precision of the inferred redshifts is to exploit the potential
impact of strong nebular emission lines on the colors of z~4-8 galaxies as
observed by Spitzer/IRAC. At z~6.8, galaxies exhibit IRAC colors as blue as
[3.6]-[4.5] ~-1, likely due to the contribution of [O III]+Hb to the 3.6 mum
flux combined with the absence of line contamination in the 4.5 mum band. In
this paper we explore the use of extremely blue [3.6]-[4.5] colors to identify
galaxies in the narrow redshift window z~6.6-6.9. When combined with an
I-dropout criterion, we demonstrate that we can plausibly select a relatively
clean sample of z~6.8 galaxies. Through a systematic application of this
selection technique to our catalogs from all five CANDELS fields, we identify
20 probable z~6.6-6.9 galaxies. We estimate that our criteria select the ~50%
strongest line emitters at z~6.8 and from the IRAC colors we estimate a typical
[O III]+Hb rest-frame equivalent width of 1085A for this sample. The small
redshift uncertainties on our sample make it particularly well suited for
follow-up studies with facilities such as ALMA.Comment: In submission to the Astrophysical Journal, updated in response to
the referee report, 13 pages, 11 figures, 1 tabl
S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey
(S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect
galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic
variance and also to take advantage of deep coextensive coverage in multiple
bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS,
S-CANDELS was carried out within five widely separated extragalactic fields:
the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS,
the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon
the existing coverage of these fields from the Spitzer Extended Deep Survey
(SEDS) by increasing the integration time from 12 hours to a total of 50 hours
but within a smaller area, 0.16 square degrees. The additional depth
significantly increases the survey completeness at faint magnitudes. This paper
describes the S-CANDELS survey design, processing, and publicly-available data
products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth
of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by
S-CANDELS are consistent with models based on known galaxy populations. The
increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a
significant additional contribution from discrete sources to the diffuse Cosmic
Infrared Background (CIB). Thus it remains true that only roughly half of the
estimated CIB flux from COBE/DIRBE is resolved.Comment: 23 pages, 19 figures, accepted by ApJ
The Origin of Line Emission in Massive z~2.3 Galaxies: Evidence for Cosmic Downsizing of AGN Host Galaxies
Using the Gemini Near-InfraRed Spectrograph (GNIRS), we have assembled a
complete sample of 20 K-selected galaxies at 2.0<z<2.7 with high quality
near-infrared spectra. As described in a previous paper, 9 of these 20 galaxies
have strongly suppressed star formation and no detected emission lines. The
present paper concerns the 11 galaxies with detected Halpha emission, and
studies the origin of the line emission using the GNIRS spectra and follow-up
observations with SINFONI on the VLT. Based on their [NII]/Halpha ratios, the
spatial extent of the line emission and several other diagnostics, we infer
that four of the eleven emission-line galaxies host narrow line active galactic
nuclei (AGNs). The AGN host galaxies have stellar populations ranging from
evolved to star-forming. Combining our sample with a UV-selected galaxy sample
at the same redshift that spans a broader range in stellar mass, we find that
black-hole accretion is more effective at the high-mass end of the galaxy
distribution (~2.9x10^11 Msun) at z~2.3. Furthermore, by comparing our results
with SDSS data, we show that the AGN activity in massive galaxies has decreased
significantly between z~2.3 and z~0. AGNs with similar normalized accretion
rates as those detected in our K-selected galaxies reside in less massive
galaxies (~4.0x10^10 Msun) at low redshift. This is direct evidence for
downsizing of AGN host galaxies. Finally, we speculate that the typical stellar
mass-scale of the actively accreting AGN host galaxies, both at low and at high
redshift, might be similar to the mass-scale at which star-forming galaxies
seem to transform into red, passive systems.Comment: Accepted for publication in the Astrophysical Journa
A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample
We investigate the nature of the substantial population of high-z galaxies
with Js-Ks>2.3 discovered as part of our FIRES survey. This colour cut
efficiently isolates z>2 galaxies with red rest-frame optical colors ("Distant
Red Galaxies" or DRGs). We select objects in the 2.5'x2.5' HDF-South (HDF-S)
and 5'x5' field around the MS1054-03 cluster; the surface densities at Ks<21
are 1.6+-0.6 and 1.0+-0.2 arcmin^-2. We discuss the 34 DRGs at 2<z<3.5: 11 at
Ks<22.5 in HDF-S and 23 at Ks<21.7 in the MS1054-03 field. We analyze the SEDs
constructed from our deep near-infrared (NIR) and optical imaging from the ESO
VLT and HST. We develop diagnostics involving I-Js, Js-H, and H-Ks to argue
that the red NIR colors of DRGs cannot be attributed solely to extinction and
require for many an evolved stellar population with prominent Balmer/4000A
break. In the rest-frame, the optical colours of DRGs fall within the envelope
of normal nearby galaxies and the UV colours suggest a wide range in star
formation activity and/or extinction. This contrasts with the much bluer and
more uniform SEDs of Lyman break galaxies (LBGs). From evolutionary synthesis
models with constant star formation, solar metallicity, Salpeter IMF, and
Calzetti et al. extinction law, we derive for the HDF-S (MS1054-03 field) DRGs
median ages of 1.7(2.0) Gyr, A_V = 2.7(2.4) mag, stellar masses 0.8(1.6)x10^11
Msun, M/L_V = 1.2(2.3) Msun/LVsun, and SFR = 120(170) Msun/yr. Models assuming
declining SFRs with e-folding timescales of 10Myr-1Gyr generally imply younger
ages, lower A_V's and SFRs, but similar stellar masses within a factor of two.
Compared to LBGs at similar redshifts and rest-frame L_V's, DRGs are older,
more massive, and more obscured for any given star formation history.
[ABRIDGED]Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 14
b/w figure
Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies
Growing observational evidence now indicates that nebular line emission has a
significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed
with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with
lower specific star formation rates. However, corrections for this line
emission have been very difficult to perform reliably due to huge uncertainties
on the overall strength of such emission at z>~5.5. Here, we present the most
direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line
emission in Lyman-break galaxies at z~7, while also presenting a strategy for
an improved measurement of the sSFR at z~7. We accomplish this through the
selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the
IRAC 4.5 micron flux provides a clean measurement of the stellar continuum
light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron
fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a
high S/N for our IRAC flux measurements, we consider only the brightest
(H_{160}<26 mag) magnified galaxies we have identified in CLASH and other
programs targeting galaxy clusters. Remarkably, the mean rest-frame optical
color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3.
Such blue colors cannot be explained by the stellar continuum light and require
that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the
average source. The bluest four sources from our seven-source sample require an
even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean
[OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple
modeling of the redshift distribution of our sources. We can also set a robust
lower limit of >~4 Gyr^-1 on the specific star formation rates based on the
mean SED for our seven-source sample. (abridged)Comment: 9 pages, 6 figures, 1 table, submitted to the Astrophysical Journa
The Bright End of the z~9 and z~10 UV Luminosity Functions using all five CANDELS Fields
The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC
observations over the CANDELS fields have been a remarkable resource for
constraining the bright end of high redshift UV luminosity functions (LFs).
However, the lack of HST 1.05-micron observations over the CANDELS fields has
made it difficult to identify z~9-10 sources robustly, since such data are
needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We
report here on the successful identification of many such z~9-10 sources from a
new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy
candidates with observations at 1.05 microns, to search for a robust
Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected
from the full HST, Spitzer/IRAC S-CANDELS observations, and the
deepest-available ground-based optical+near-infrared observations. We
identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these
galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up
strategy has proven to be very efficient in making use of scarce HST time to
secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we
replicate the selection process for our sample (both the preselection and
follow-up) and use it to improve current estimates for the volume density of
bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and
8(-3)(+9)x lower, respectively, than found at z~8. When compared with the
best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV
luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag),
these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower,
respectively, than the extrapolated trends. Our new results are broadly
consistent with the "accelerated evolution" scenario at z>8, as seen in many
theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in
press, including some minor textual corrections identified at the proof stag
A Census of Star-Forming Galaxies in the z~9-10 Universe based on HST+Spitzer Observations Over 19 CLASH clusters: Three Candidate z~9-10 Galaxies and Improved Constraints on the Star Formation Rate Density at z~9
We utilise a two-color Lyman-Break selection criterion to search for z~9-10
galaxies over the first 19 clusters in the CLASH program. A systematic search
yields three z~9-10 candidates. While we have already reported the most robust
of these candidates, MACS1149-JD, two additional z~9 candidates are also found
and have H_{160}-band magnitudes of ~26.2-26.9. A careful assessment of various
sources of contamination suggests <~1 contaminants for our z~9-10 selection. To
determine the implications of these search results for the LF and SFR density
at z~9, we introduce a new differential approach to deriving these quantities
in lensing fields. Our procedure is to derive the evolution by comparing the
number of z~9-10 galaxy candidates found in CLASH with the number of galaxies
in a slightly lower redshift sample (after correcting for the differences in
selection volumes), here taken to be z~8. This procedure takes advantage of the
fact that the relative volumes available for the z~8 and z~9-10 selections
behind lensing clusters are not greatly dependent on the details of the lensing
models. We find that the normalization of the UV LF at z~9 is just
0.28_{-0.20}^{+0.39}\times that at z~8, ~1.4_{-0.8}^{+3.0}x lower than
extrapolating z~4-8 LF results. While consistent with the evolution in the UV
LF seen at z~4-8, these results marginally favor a more rapid evolution at z>8.
Compared to similar evolutionary findings from the HUDF, our result is less
insensitive to large-scale structure uncertainties, given our many independent
sightlines on the high-redshift universe.Comment: 22 pages, 11 figures, 5 tables, accepted for publication in the
Astrophysical Journal, updated to include the much deeper Spitzer/IRAC
observations over our three z~9-10 candidate
The Color Magnitude Distribution of Field Galaxies to z~3: the evolution and modeling of the blue sequence
Using deep NIR VLT/ISAAC and optical HST/WFPC2 imaging in the fields of the
HDFS and MS1054-03, we study the rest-frame UV-to-optical colors and magnitudes
of galaxies to z~3. While there is no evidence for a red sequence at z~3, there
does appear to be a well-defined color-magnitude relation (CMR) for blue
galaxies at all redshifts, with more luminous galaxies having redder U-V
colors. The slope of the blue CMR is independent of redshift d(U-V)/dMV = -0.09
(0.01) and can be explained by a correlation of dust-reddening with luminosity.
The average color at fixed luminosity reddens strongly \Delta(U-V) = 0.75 from
z~3 to z=0, much of which can be attributed to aging of the stars. The color
scatter of the blue sequence is relatively small sigma(U-V) = 0.25 (0.03) and
constant to z~3, but notably asymmetrical with a sharp blue ridge and a wing
towards redder colors. We explore sets of star formation histories to study the
constraints placed by the shape of the scatter at z=2-3. One particular set of
models, episodic star formation, reproduces the detailed properties very well.
For a two-state model with high and low star formation, the duty cycle is
constrained to be > 40% and the contrast between the states must be a factor >
5 (or a scatter in log(SFR) of > 0.35 dex around the mean). However, episodic
models do not explain the observed tail of very red galaxies, primarily Distant
Red Galaxies (DRGs), which may have ceased star formation altogether or are
more heavily obscured. Finally, the relative number density of red, luminous MV
< -20.5 galaxies increases by a factor of ~ 6 from z = 2.7 to z = 0.5, as does
their contribution to the total rest-frame V-band luminosity density. We are
likely viewing the progressive formation of red, passively evolving galaxies.Comment: 29 pages, 24 figures, in emulateapj style. Abstract is abridged. Some
postscript figures are compressed. accepted for publication in ApJ (scheduled
for August 20, 2007, v665n 2 issue
- …
