6,715 research outputs found
Support schemes for renewable electricity in the EU
This paper discusses the level and design of support schemes used to promote renewable electricity in Europe. A theoretical model is presented to determine optimal renewable energy policies. Policies that solely aim to address environmental externalities and energy security risks are unlikely to make renewable power technologies competitive. Learning effects and spillovers are necessary to justify the need for support schemes. The analysis suggests that feed-in premiums guaranteed in addition to the electricity market price should be preferred over feed-in tariffs, which provide the eligible power producer with a guaranteed price. The premiums should be time limited and frequently reviewed. Once the technology becomes competitive, tradable green certificates would be a more suitable support instrument. As regards wind energy, the available estimates of externalities suggest that levels are probably too high in many Member States. In addition, the current promotion of photovoltaics could possibly be more cost-efficient if it targeted technology development more directly.european union, eu, setzer, wolff, van den Noord, euro area, money, heterogeneity, money holdings
Fe I Oscillator Strengths for the Gaia-ESO Survey
The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale
study of multi-element chemical abundances of some 100 000 stars in the Milky
Way with the ultimate aim of quantifying the formation history and evolution of
young, mature and ancient Galactic populations. However, in preparing for the
analysis of GES spectra, it has been noted that atomic oscillator strengths of
important Fe I lines required to correctly model stellar line intensities are
missing from the atomic database. Here, we present new experimental oscillator
strengths derived from branching fractions and level lifetimes, for 142
transitions of Fe I between 3526 {\AA} and 10864 {\AA}, of which at least 38
are urgently needed by GES. We also assess the impact of these new data on
solar spectral synthesis and demonstrate that for 36 lines that appear
unblended in the Sun, Fe abundance measurements yield a small line-by-line
scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with
recent publications.Comment: Accepted for publication in Mon. Not. R. Astron. So
Cosmic Needles versus Cosmic Microwave Background Radiation
It has been suggested by a number of authors that the 2.7K cosmic microwave
background (CMB) radiation might have arisen from the radiation from Population
III objects thermalized by conducting cosmic graphite/iron needle-shaped dust.
Due to lack of an accurate solution to the absorption properties of exceedingly
elongated grains, in existing literature which studies the CMB thermalizing
process they are generally modelled as (1) needle-like spheroids in terms of
the Rayleigh approximation; (2) infinite cylinders; and (3) the antenna theory.
We show here that the Rayleigh approximation is not valid since the Rayleigh
criterion is not satisfied for highly conducting needles. We also show that the
available intergalactic iron dust, if modelled as infinite cylinders, is not
sufficient to supply the required opacity at long wavelengths to obtain the
observed isotropy and Planckian nature of the CMB. If appealing to the antenna
theory, conducting iron needles with exceedingly large elongations (10^4)
appear able to provide sufficient opacity to thermalize the CMB within the iron
density limit. But the applicability of the antenna theory to exceedingly thin
needles of nanometer/micrometer in thickness needs to be justified.Comment: 13 pages, 4 figures; submitted to ApJ
Cellular automata on regular rooted trees
We study cellular automata on regular rooted trees. This includes the
characterization of sofic tree shifts in terms of unrestricted Rabin automata
and the decidability of the surjectivity problem for cellular automata between
sofic tree shifts
Complexity Measures from Interaction Structures
We evaluate new complexity measures on the symbolic dynamics of coupled tent
maps and cellular automata. These measures quantify complexity in terms of
-th order statistical dependencies that cannot be reduced to interactions
between units. We demonstrate that these measures are able to identify
complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex
Gamow Shell Model Description of Neutron-Rich Nuclei
This work presents the first continuum shell-model study of weakly bound
neutron-rich nuclei involving multiconfiguration mixing. For the
single-particle basis, the complex-energy Berggren ensemble representing the
bound single-particle states, narrow resonances, and the non-resonant continuum
background is taken. Our shell-model Hamiltonian consists of a one-body finite
potential and a zero-range residual two-body interaction. The systems with two
valence neutrons are considered. The Gamow shell model, which is a
straightforward extension of the traditional shell model, is shown to be an
excellent tool for the microscopic description of weakly bound systems. It is
demonstrated that the residual interaction coupling to the particle continuum
is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent
versio
A new hierarchy for automaton semigroups
We define a new strict and computable hierarchy for the family of automaton
semigroups, which reflects the various asymptotic behaviors of the
state-activity growth. This hierarchy extends that given by Sidki for automaton
groups, and also gives new insights into the latter. Its exponential part
coincides with a notion of entropy for some associated automata.
We prove that the Order Problem is decidable when the state-activity is
bounded. The Order Problem remains open for the next level of this hierarchy,
that is, when the state-activity is linear. Gillibert showed that it is
undecidable in the whole family.
The former results are implemented and will be available in the GAP package
FR developed by the first author.Comment: 12 pages, accepted and presented at CIAA 201
Random walks on the Apollonian network with a single trap
Explicit determination of the mean first-passage time (MFPT) for trapping
problem on complex media is a theoretical challenge. In this paper, we study
random walks on the Apollonian network with a trap fixed at a given hub node
(i.e. node with the highest degree), which are simultaneously scale-free and
small-world. We obtain the precise analytic expression for the MFPT that is
confirmed by direct numerical calculations. In the large system size limit, the
MFPT approximately grows as a power-law function of the number of nodes, with
the exponent much less than 1, which is significantly different from the
scaling for some regular networks or fractals, such as regular lattices,
Sierpinski fractals, T-graph, and complete graphs. The Apollonian network is
the most efficient configuration for transport by diffusion among all
previously studied structure.Comment: Definitive version accepted for publication in EPL (Europhysics
Letters
Main-Sequence and sub-giant stars in the Globular Cluster NGC6397: The complex evolution of the lithium abundance
Thanks to the high multiplex and efficiency of Giraffe at the VLT we have
been able for the first time to observe the Li I doublet in the Main Sequence
(MS) stars of a Globular Cluster. At the same time we observed Li in a sample
of Sub-Giant (SG) stars of the same B-V colour. Our final sample is composed of
84 SG stars and 79 MS stars. In spite of the fact that SG and MS span the same
temperature range we find that the equivalent widths of the Li I doublet in SG
stars are systematically larger than those in MS stars, suggesting a higher Li
content among SG stars. This is confirmed by our quantitative analysis. We
derived the effective temperatures, from H fitting, and NLTE Li
abundances of the stars in our the sample, using 3D and 1D models. We find that
SG stars have a mean Li abundance higher by 0.1dex than MS stars, using both 1D
and 3D models. We also detect a positive slope of Li abundance with effective
temperature. These results provide an unambiguous evidence that the Li
abundance changes with evolutionary status. The physical mechanisms responsible
for this behaviour are not yet clear, and none of the existing models seems to
describe accurately these observations. Based on these conclusions, we believe
that the cosmological lithium problem still remains an open question.Comment: Proceedings of the contributed talk presented at the IAU Symposium
26
The influence of electron collisions on non-LTE Li line formation in stellar atmospheres
The influence of the uncertainties in the rate coefficient data for
electron-impact excitation and ionization on non-LTE Li line formation in cool
stellar atmospheres is investigated. We examine the electron collision data
used in previous non-LTE calculations and compare them to recent calculations
that use convergent close-coupling (CCC) techniques and to our own calculations
using the R-matrix with pseudostates (RMPS) method. We find excellent agreement
between rate coefficients from the CCC and RMPS calculations, and reasonable
agreement between these data and the semi-empirical data used in non-LTE
calculations up to now. The results of non-LTE calculations using the old and
new data sets are compared and only small differences found: about 0.01 dex (~
2%) or less in the abundance corrections. We therefore conclude that the
influence on non-LTE calculations of uncertainties in the electron collision
data is negligible. Indeed, together with the collision data for the charge
exchange process Li(3s) + H Li^+ + H^- now available, and barring the
existence of an unknown important collisional process, the collisional data in
general is not a source of significant uncertainty in non-LTE Li line formation
calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor
corrections following proof
- …
