2,569 research outputs found

    Effectively Regulating E-Cigarettes and Their Advertising—and the First Amendment

    Get PDF
    If tobacco smoking did not exist in the United States, there would be no reason, from a public health perspective, to allow addictive, nicotine-containing e-cigarettes to be marketed and sold. Because e-cigarette use, by itself, is neither beneficial nor benign to users and nonusers, the only public health justification for allowing e-cigarettes in the existing U.S. market would be if doing so would not sustain or increase existing smoking levels but would help smokers quit completely or provide addicted smokers a less harmful way to obtain the nicotine they crave. Yet e-cigarettes are now pervasive in the U.S. market, being sold with unnecessary harmful characteristics and being advertised in ways that encourage youth experimentation and use. Unless effectively regulated, e-cigarette use will be more harmful than necessary and their advertising will work to: (a) increase initiation among both youth and non-tobacco-using adults; (b) prompt former smokers to relapse back into addicted nicotine use; (c) encourage smokers to use e-cigarettes where they cannot smoke; and (d) prompt smokers to switch to e-cigarettes instead of quitting all tobacco and nicotine use. This paper proposes a viable way to regulate e-cigarettes and their advertising both to minimize the health harms they might cause and to allow e-cigarettes to fulfill their potential as cessation aids or harm-reduction products. Normally, any efforts by FDA to establish effective advertising restrictions must accommodate considerable constraints from the First Amendment’s commercial speech protections. However, because of existing text in the Tobacco Control Act, on the effective date of the final FDA deeming rule that puts e-cigarettes under FDA’s active tobacco product jurisdiction all nicotine-containing e-cigarettes will be on the U.S. market illegally until they can obtain permissive orders from FDA. That situation should reduce applicable First Amendment constraints, providing FDA with a tremendous opportunity to place the kinds of substantial restrictions and requirements on e-cigarette advertising necessary to minimize their harmful aspects and maximize their potential to produce substantial net public health benefits

    Filling in the Blanks on Reducing Tobacco Product Addictiveness in the FCTC Partial Guidelines for Articles 9 & 10

    Get PDF
    The existing Partial Guidelines for Implementation of Articles 9 & 10 of the WHO Framework Convention for Tobacco Control includes a strategy for regulating tobacco products to reduce their attractiveness, but does not yet provide any guidance for reducing either the toxicity or the addictiveness of tobacco products. Section 1.2.1.2, “Addictiveness (dependence liability),” states only that: “This section has been left blank intentionally to indicate that guidance will be proposed at a later stage.” A related footnote says that the blanks will be filled “as new country experience, and scientific, medical and other evidence become available. . . [and] will also depend on the validation of the analytical chemical methods for testing and measuring cigarette contents and emissions.” This article details that sufficient evidence and accurate testing methods are now available to begin providing useful guidance to countries that have the capacity to implement new measures to reduce the addictiveness of tobacco products and enforce compliance. Using the format of the existing partial guidelines, this working paper suggests possible draft text for the blank “Addictiveness” section, followed by a concise summary of supporting research and analysis

    Nonlinear r-Modes in Neutron Stars: Instability of an unstable mode

    Get PDF
    We study the dynamical evolution of a large amplitude r-mode by numerical simulations. R-modes in neutron stars are unstable growing modes, driven by gravitational radiation reaction. In these simulations, r-modes of amplitude unity or above are destroyed by a catastrophic decay: A large amplitude r-mode gradually leaks energy into other fluid modes, which in turn act nonlinearly with the r-mode, leading to the onset of the rapid decay. As a result the r-mode suddenly breaks down into a differentially rotating configuration. The catastrophic decay does not appear to be related to shock waves at the star's surface. The limit it imposes on the r-mode amplitude is significantly smaller than that suggested by previous fully nonlinear numerical simulations.Comment: Published in Phys. Rev. D Rapid Comm. 66, 041303(R) (2002

    Effect of hyperon bulk viscosity on neutron-star r-modes

    Full text link
    Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new relativistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation driven instability in the r-modes. We find that the instability is completely suppressed in stars with cores cooler than a few times 10^9 K, but that stars rotating more rapidly than 10-30% of maximum are unstable for temperatures around 10^10 K. Since neutron-star cores are expected to cool to a few times 10^9 K within seconds (much shorter than the r-mode instability growth time) due to direct Urca processes, we conclude that the gravitational radiation instability will be suppressed in young neutron stars before it can significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte

    Nonlinear Development of the Secular Bar-mode Instability in Rotating Neutron Stars

    Get PDF
    We have modelled the nonlinear development of the secular bar-mode instability that is driven by gravitational radiation-reaction (GRR) forces in rotating neutron stars. In the absence of any competing viscous effects, an initially uniformly rotating, axisymmetric n=1/2n=1/2 polytropic star with a ratio of rotational to gravitational potential energy T/W=0.181T/|W| = 0.181 is driven by GRR forces to a bar-like structure, as predicted by linear theory. The pattern frequency of the bar slows to nearly zero, that is, the bar becomes almost stationary as viewed from an inertial frame of reference as GRR removes energy and angular momentum from the star. In this ``Dedekind-like'' state, rotational energy is stored as motion of the fluid in highly noncircular orbits inside the bar. However, in less than 10 dynamical times after its formation, the bar loses its initially coherent structure as the ordered flow inside the bar is disrupted by what appears to be a purely hydrodynamical, short-wavelength, ``shearing'' type instability. The gravitational waveforms generated by such an event are determined, and an estimate of the detectability of these waves is presented.Comment: 25 pages, 9 figures, accepted for publication in ApJ, refereed version, updated, for quicktime movie, see http://www.phys.lsu.edu/~ou/movie/fmode/new/fmode.b181.om4.2e5.mo

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism

    Full text link
    We derive the hydrodynamical equations of r-mode oscillations in neutron stars in presence of a novel damping mechanism related to particle number changing processes. The change in the number densities of the various species leads to new dissipative terms in the equations which are responsible of the {\it rocket effect}. We employ a two-fluid model, with one fluid consisting of the charged components, while the second fluid consists of superfluid neutrons. We consider two different kind of r-mode oscillations, one associated with comoving displacements, and the second one associated with countermoving, out of phase, displacements.Comment: 10 page

    The rotational modes of relativistic stars: Numerical results

    Full text link
    We study the inertial modes of slowly rotating, fully relativistic compact stars. The equations that govern perturbations of both barotropic and non-barotropic models are discussed, but we present numerical results only for the barotropic case. For barotropic stars all inertial modes are a hybrid mixture of axial and polar perturbations. We use a spectral method to solve for such modes of various polytropic models. Our main attention is on modes that can be driven unstable by the emission of gravitational waves. Hence, we calculate the gravitational-wave growth timescale for these unstable modes and compare the results to previous estimates obtained in Newtonian gravity (i.e. using post-Newtonian radiation formulas). We find that the inertial modes are slightly stabilized by relativistic effects, but that previous conclusions concerning eg. the unstable r-modes remain essentially unaltered when the problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure

    Second-order rotational effects on the r-modes of neutron stars

    Get PDF
    Techniques are developed here for evaluating the r-modes of rotating neutron stars through second order in the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular application here. The bulk-viscosity coupling to the r-modes, which appears first at second order, is evaluated. The bulk-viscosity timescales are found here to be longer than previous estimates for normal neutron stars, but shorter than previous estimates for strange stars. These new timescales do not substantially affect the current picture of the gravitational radiation driven instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte

    Exotic bulk viscosity and its influence on neutron star r-modes

    Get PDF
    We investigate the effect of exotic matter in particular, hyperon matter on neutron star properties such as equation of state (EoS), mass-radius relationship and bulk viscosity. Here we construct equations of state within the framework of a relativistic field theoretical model. As hyperons are produced abundantly in dense matter, hyperon-hyperon interaction becomes important and is included in this model. Hyperon-hyperon interaction gives rise to a softer EoS which results in a smaller maximum mass neutron star compared with the case without the interaction. Next we compute the coefficient of bulk viscosity and the corresponding damping time scale due to the non-leptonic weak process including Λ\Lambda hyperons. Further, we investigate the role of the bulk viscosity on gravitational radiation driven r-mode instability in a neutron star of given mass and temperature and find that the instability is effectively suppressed.Comment: 5 pages, 3 figure, presented in the Conference on Isolated Neutron Stars: From the Interior to The Surface, London, UK, 24-28 April, 2006; revised and final version to appear in Astrophys. Space Sc
    corecore