494 research outputs found
Distributed Symmetry Breaking in Hypergraphs
Fundamental local symmetry breaking problems such as Maximal Independent Set
(MIS) and coloring have been recognized as important by the community, and
studied extensively in (standard) graphs. In particular, fast (i.e.,
logarithmic run time) randomized algorithms are well-established for MIS and
-coloring in both the LOCAL and CONGEST distributed computing
models. On the other hand, comparatively much less is known on the complexity
of distributed symmetry breaking in {\em hypergraphs}. In particular, a key
question is whether a fast (randomized) algorithm for MIS exists for
hypergraphs.
In this paper, we study the distributed complexity of symmetry breaking in
hypergraphs by presenting distributed randomized algorithms for a variety of
fundamental problems under a natural distributed computing model for
hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can
be solved in rounds ( is the number of nodes of the
hypergraph) in the LOCAL model. We then present a key result of this paper ---
an -round hypergraph MIS algorithm in
the CONGEST model where is the maximum node degree of the hypergraph
and is any arbitrarily small constant.
To demonstrate the usefulness of hypergraph MIS, we present applications of
our hypergraph algorithm to solving problems in (standard) graphs. In
particular, the hypergraph MIS yields fast distributed algorithms for the {\em
balanced minimal dominating set} problem (left open in Harris et al. [ICALP
2013]) and the {\em minimal connected dominating set problem}. We also present
distributed algorithms for coloring, maximal matching, and maximal clique in
hypergraphs.Comment: Changes from the previous version: More references adde
Lower Bounds for Structuring Unreliable Radio Networks
In this paper, we study lower bounds for randomized solutions to the maximal
independent set (MIS) and connected dominating set (CDS) problems in the dual
graph model of radio networks---a generalization of the standard graph-based
model that now includes unreliable links controlled by an adversary. We begin
by proving that a natural geographic constraint on the network topology is
required to solve these problems efficiently (i.e., in time polylogarthmic in
the network size). We then prove the importance of the assumption that nodes
are provided advance knowledge of their reliable neighbors (i.e, neighbors
connected by reliable links). Combined, these results answer an open question
by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC
2011] are optimal with respect to their dual graph model assumptions. They also
provide insight into what properties of an unreliable network enable efficient
local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of
the International Symposium on Distributed Computing (DISC
Enumerating Cyclic Orientations of a Graph
Acyclic and cyclic orientations of an undirected graph have been widely
studied for their importance: an orientation is acyclic if it assigns a
direction to each edge so as to obtain a directed acyclic graph (DAG) with the
same vertex set; it is cyclic otherwise. As far as we know, only the
enumeration of acyclic orientations has been addressed in the literature. In
this paper, we pose the problem of efficiently enumerating all the
\emph{cyclic} orientations of an undirected connected graph with vertices
and edges, observing that it cannot be solved using algorithmic techniques
previously employed for enumerating acyclic orientations.We show that the
problem is of independent interest from both combinatorial and algorithmic
points of view, and that each cyclic orientation can be listed with
delay time. Space usage is with an additional setup cost
of time before the enumeration begins, or with a setup cost of
time
How Long It Takes for an Ordinary Node with an Ordinary ID to Output?
In the context of distributed synchronous computing, processors perform in
rounds, and the time-complexity of a distributed algorithm is classically
defined as the number of rounds before all computing nodes have output. Hence,
this complexity measure captures the running time of the slowest node(s). In
this paper, we are interested in the running time of the ordinary nodes, to be
compared with the running time of the slowest nodes. The node-averaged
time-complexity of a distributed algorithm on a given instance is defined as
the average, taken over every node of the instance, of the number of rounds
before that node output. We compare the node-averaged time-complexity with the
classical one in the standard LOCAL model for distributed network computing. We
show that there can be an exponential gap between the node-averaged
time-complexity and the classical time-complexity, as witnessed by, e.g.,
leader election. Our first main result is a positive one, stating that, in
fact, the two time-complexities behave the same for a large class of problems
on very sparse graphs. In particular, we show that, for LCL problems on cycles,
the node-averaged time complexity is of the same order of magnitude as the
slowest node time-complexity.
In addition, in the LOCAL model, the time-complexity is computed as a worst
case over all possible identity assignments to the nodes of the network. In
this paper, we also investigate the ID-averaged time-complexity, when the
number of rounds is averaged over all possible identity assignments. Our second
main result is that the ID-averaged time-complexity is essentially the same as
the expected time-complexity of randomized algorithms (where the expectation is
taken over all possible random bits used by the nodes, and the number of rounds
is measured for the worst-case identity assignment).
Finally, we study the node-averaged ID-averaged time-complexity.Comment: (Submitted) Journal versio
Limitations to Frechet's Metric Embedding Method
Frechet's classical isometric embedding argument has evolved to become a
major tool in the study of metric spaces. An important example of a Frechet
embedding is Bourgain's embedding. The authors have recently shown that for
every e>0 any n-point metric space contains a subset of size at least n^(1-e)
which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is
non-Frechet, and the purpose of this note is to show that this is not
coincidental. Specifically, for every e>0, we construct arbitrarily large
n-point metric spaces, such that the distortion of any Frechet embedding into
l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur
Exact bounds for distributed graph colouring
We prove exact bounds on the time complexity of distributed graph colouring.
If we are given a directed path that is properly coloured with colours, by
prior work it is known that we can find a proper 3-colouring in communication rounds. We close the gap between upper and
lower bounds: we show that for infinitely many the time complexity is
precisely communication rounds.Comment: 16 pages, 3 figure
A note on the minimum distance of quantum LDPC codes
We provide a new lower bound on the minimum distance of a family of quantum
LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and
Shokrollahi. Our bound is exponential, improving on the quadratic bound of
Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family
of subsets of the hypercube which locally satisfy some parity conditions
Pseudorandomness for Regular Branching Programs via Fourier Analysis
We present an explicit pseudorandom generator for oblivious, read-once,
permutation branching programs of constant width that can read their input bits
in any order. The seed length is , where is the length of the
branching program. The previous best seed length known for this model was
, which follows as a special case of a generator due to
Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of
for arbitrary branching programs of size ). Our techniques
also give seed length for general oblivious, read-once branching
programs of width , which is incomparable to the results of
Impagliazzo et al.Our pseudorandom generator is similar to the one used by
Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite
different; ours is based on Fourier analysis of branching programs. In
particular, we show that an oblivious, read-once, regular branching program of
width has Fourier mass at most at level , independent of the
length of the program.Comment: RANDOM 201
- …
