119,097 research outputs found

    Domain Walls from M-branes

    Get PDF
    We discuss the vertical dimensional reduction of M-branes to domain walls in D=7 and D=4, by dimensional reduction on Ricci-flat 4-manifolds and 7-manifolds. In order to interpret the vertically-reduced 5-brane as a domain wall solution of a dimensionally-reduced theory in D=7, it is necessary to generalise the usual Kaluza-Klein ansatz, so that the 3-form potential in D=11 has an additional term that can generate the necessary cosmological term in D=7. We show how this can be done for general 4-manifolds, extending previous results for toroidal compactifications. By contrast, no generalisation of the Kaluza-Klein ansatz is necessary for the compactification of M-theory to a D=4 theory that admits the domain wall solution coming from the membrane in D=11.Comment: Latex, 9 pages, reference adde

    T-duality and U-duality in toroidally-compactified strings

    Get PDF
    We address the issue of T-duality and U-duality symmetries in the toroidally-compactified type IIA string. It is customary to take as a starting point the dimensionally-reduced maximal supergravity theories, with certain field strengths dualised such that the classical theory exhibits a global En(n)E_{n(n)} symmetry, where n=11-D in D dimensions. A discrete subgroup then becomes the conjectured U-duality group. In dimensions D\le 6, these necessary dualisations include NS-NS fields, whose potentials, rather than merely their field strengths, appear explicitly in the couplings to the string worldsheet. Thus the usually-stated U-duality symmetries act non-locally on the fundamental fields of perturbative string theory. At least at the perturbative level, it seems to be more appropriate to consider the symmetries of the versions of the lower-dimensional supergravities in which no dualisations of NS-NS fields are required, although dualisations of the R-R fields are permissible since these couple to the string through their field strengths. Taking this viewpoint, the usual T-duality groups survive unscathed, as one would hope since T-duality is a perturbative symmetry, but the U-duality groups are modified in D\le 6.Comment: Latex, 21 pages. References and discussion adde

    Individualized Rank Aggregation using Nuclear Norm Regularization

    Full text link
    In recent years rank aggregation has received significant attention from the machine learning community. The goal of such a problem is to combine the (partially revealed) preferences over objects of a large population into a single, relatively consistent ordering of those objects. However, in many cases, we might not want a single ranking and instead opt for individual rankings. We study a version of the problem known as collaborative ranking. In this problem we assume that individual users provide us with pairwise preferences (for example purchasing one item over another). From those preferences we wish to obtain rankings on items that the users have not had an opportunity to explore. The results here have a very interesting connection to the standard matrix completion problem. We provide a theoretical justification for a nuclear norm regularized optimization procedure, and provide high-dimensional scaling results that show how the error in estimating user preferences behaves as the number of observations increase

    Multi-scalar p-brane solitons

    Full text link
    In a previous paper \cite{lp}, supersymmetric pp-brane solutions involving one dilatonic scalar field in maximal supergravity theories were classified. Although these solutions involve a number of participating field strengths, they are all equal and thus they carry equal electric or magnetic charges. In this paper, we generalise all these solutions to multi-scalar solutions in which the charges become independent free parameters. The mass per unit pp-volume is equal to the sum of these Page charges. We find that for generic values of the Page charges, they preserve the same fraction of the supersymmetry as in their single-scalar limits. However, for special values of the Page charges, the supersymmetry can be enhanced.Comment: 15 pages, Latex, no figure

    Exact Embedding of N=1, D=7 Gauged Supergravity in D=11

    Get PDF
    We obtain the explicit and complete bosonic non-linear Kaluza-Klein ansatz for the consistent S^4 reduction of D=11 supergravity to N=1, D=7 gauged supergravity. This provides a geometrical interpretation of the lower dimensional solutions from the eleven-dimensional point of view.Comment: 9 pages, Latex, minor correction

    Study of unstable particle through the spectral function in O(4) ϕ4\phi^4 theory

    Get PDF
    We test application of the maximum entropy method to decompose the states contributing to the unstable σ\sigma correlation function through the spectral function in the four dimensional O(4) ϕ4\phi^4 theory. Reliable results are obtained for the σ\sigma mass and two-particle ππ\pi\pi state energy using only the σ\sigma correlation function. We also find that the property of the σ\sigma particle is different between the unstable (mσ/mπ>2m_{\sigma}/m_{\pi}>2) and stable (mσ/mπ<2m_{\sigma}/m_{\pi}<2) cases.Comment: Lattice2002(spectrum), 3 page

    A Construction of Killing Spinors on S^n

    Get PDF
    We derive simple general expressions for the explicit Killing spinors on the n-sphere, for arbitrary n. Using these results we also construct the Killing spinors on various AdS x Sphere supergravity backgrounds, including AdS_5 x S^5$, AdS_4 x S^7 and AdS_7 x S^4. In addition, we extend previous results to obtain the Killing spinors on the hyperbolic spaces H^n.Comment: 11 pages, LaTe

    Consistent Kaluza-Klein Sphere Reductions

    Get PDF
    We study the circumstances under which a Kaluza-Klein reduction on an n-sphere, with a massless truncation that includes all the Yang-Mills fields of SO(n+1), can be consistent at the full non-linear level. We take as the starting point a theory comprising a p-form field strength and (possibly) a dilaton, coupled to gravity in the higher dimension D. We show that aside from the previously-studied cases with (D,p)=(11,4) and (10,5) (associated with the S^4 and S^7 reductions of D=11 supergravity, and the S^5 reduction of type IIB supergravity), the only other possibilities that allow consistent reductions are for p=2, reduced on S^2, and for p=3, reduced on S^3 or S^{D-3}. We construct the fully non-linear Kaluza-Klein Ansatze in all these cases. In particular, we obtain D=3, N=8, SO(8) and D=7, N=2, SO(4) gauged supergravities from S^7 and S^3 reductions of N=1 supergravity in D=10.Comment: 27 pages, Latex, typo correcte
    corecore