2,809 research outputs found
Enhanced quantum tunnelling induced by disorder
We reconsider the problem of the enhancement of tunnelling of a quantum
particle induced by disorder of a one-dimensional tunnel barrier of length ,
using two different approximate analytic solutions of the invariant imbedding
equations of wave propagation for weak disorder. The two solutions are
complementary for the detailed understanding of important aspects of numerical
results on disorder-enhanced tunnelling obtained recently by Kim et al. (Phys.
rev. B{\bf 77}, 024203 (2008)). In particular, we derive analytically the
scaled wavenumber -threshold where disorder-enhanced tunnelling of an
incident electron first occurs, as well as the rate of variation of the
transmittance in the limit of vanishing disorder. Both quantities are in good
agreement with the numerical results of Kim et al. Our non-perturbative
solution of the invariant imbedding equations allows us to show that the
disorder enhances both the mean conductance and the mean resistance of the
barrier.Comment: 10 page
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
The Pulsation Mode and Distance of the Cepheid FF Aquilae
The determination of pulsation mode and distance for field Cepheids is a
complicated problem best resolved by a luminosity estimate. For illustration a
technique based on spectroscopic luminosity discrimination is applied to the
4.47d s-Cepheid FF Aql. Line ratios in high dispersion spectra of the variable
yield values of =-3.40+-0.02 s.e.(+-0.04 s.d.), average effective
temperature Teff=6195+-24 K, and intrinsic color (-)o = +0.506+-0.007,
corresponding to a reddening of E(B-V)=0.25+-0.01, or E(B-V)(B0)=0.26+-0.01.
The skewed light curve, intrinsic color, and luminosity of FF Aql are
consistent with fundamental mode pulsation for a small amplitude classical
Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A
distance of 413+-14 pc is estimated from the Cepheid's angular diameter in
conjunction with a mean radius of =39.0+-0.7 Rsun inferred from its
luminosity and effective temperature. The dust extinction towards FF Aql is
described by a ratio of total-to-selective extinction of
Rv=Av/E(B-V)=3.16+-0.34 according to the star's apparent distance modulus.Comment: To appear in ApJ
Negotiation in Multi-Agent Systems
In systems composed of multiple autonomous agents, negotiation is a key form of interaction that enables groups of agents to arrive at a mutual agreement regarding some belief, goal or plan, for example. Particularly because the agents are autonomous and cannot be assumed to be benevolent, agents must influence others to convince them to act in certain ways, and negotiation is thus critical for managing such inter-agent dependencies. The process of negotiation may be of many different forms, such as auctions, protocols in the style of the contract net, and argumentation, but it is unclear just how sophisticated the agents or the protocols for interaction must be for successful negotiation in different contexts. All these issues were raised in the panel session on negotiation
Pendokumentasian Aplikasi Ragam Hias Budaya Bali, sebagai Upaya Konservasi Budaya Bangsa Khususnya pada Perancangan Interior
Various ornament of Indonesian people comes from the ethnic groups from all over the archipelago. As a tangible cultural ornament has a specific purpose and it does not change throughout the ages. Bali is one of the ethnic group in archipelago that has beautiful decorative art and one of the most popular tourism destination in Indonesia. Bali\u27s ornament generally seen as decorative carving on the column, window or even in door. The beauty of Bali is not only as an inspiration for their colors and sculpture but also the variety of forms that have been simplified in the ornament. Moreover, floral & fauna forms are easy to apply as an interior element in modern buildings. Generally the value of these ornament has a specific purpose related to the cultural and social custom in Bali people. So that the application need to consider more about the purpose of the symbol of the ornament
Absence of skew scattering in two-dimensional systems: Testing the origins of the anomalous Hall effect
We study the anomalous Hall conductivity in spin-polarized, asymmetrically
confined two-dimensional electron and hole systems, focusing on skew-scattering
contributions to the transport. We find that the skew scattering, principally
responsible for the extrinsic contribution to the anomalous Hall effect,
vanishes for the two-dimensional electron system if both chiral Rashba subbands
are partially occupied, and vanishes always for the two-dimensional hole gas
studied here, regardless of the band filling. Our prediction can be tested with
the proposed coplanar two-dimensional electron/hole gas device and can be used
as a benchmark to understand the crossover from the intrisic to the extrinsic
anomalous Hall effect.Comment: 4 pages, 2 figures include
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
A New Method of the Corotation Radius Evaluation in our Galaxy
We propose a new method for determination of the rotation velocity of the
galactic spiral density waves, correspondingly, the corotation radius, ,
in our Galaxy by means of statistical analysis of radial oxygen distribution in
the galactic disc derived over Cepheids. The corotation resonance happens to be
located at kpc, depending on the rate of gas infall on to
the galactic disc, the statistical error being kpc.
Simultaneously, the constant for the rate of oxygen synthesis in the galactic
disc was determined.
We also argue in favour of a very short time-scale formation of the galactic
disc, namely: Gyr. This scenario enables to solve the problem of
the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl
Dynamics at the angle of repose: jamming, bistability, and collapse
When a sandpile relaxes under vibration, it is known that its measured angle
of repose is bistable in a range of values bounded by a material-dependent
maximal angle of stability; thus, at the same angle of repose, a sandpile can
be stationary or avalanching, depending on its history. In the nearly jammed
slow dynamical regime, sandpile collapse to a zero angle of repose can also
occur, as a rare event. We claim here that fluctuations of {\it dilatancy} (or
local density) are the key ingredient that can explain such varied phenomena.
In this work, we model the dynamics of the angle of repose and of the density
fluctuations, in the presence of external noise, by means of coupled stochastic
equations. Among other things, we are able to describe sandpile collapse in
terms of an activated process, where an effective temperature (related to the
density as well as to the external vibration intensity) competes against the
configurational barriers created by the density fluctuations.Comment: 15 pages, 1 figure. Minor changes and update
- …
