2,552 research outputs found

    Inhibition of Trophoblast-Induced Spiral Artery Remodeling Reduces Placental Perfusion in Rat Pregnancy.

    Get PDF
    Rats harboring the human angiotensinogen and human renin genes develop preeclamptic features in pregnancy. The preeclamptic rats exhibit a deeper trophoblast invasion associated with a reduced resistance index by uterine Doppler. Doxycycline inhibits matrix metalloproteinase activity. We tested the hypothesis that matrix metalloproteinase inhibition reduces trophoblast invasion with subsequent changes in placental perfusion. Preeclamptic and pregnant control Sprague-Dawley rats were treated with doxycycline (30 mg/kg of body weight orally) from gestational day 12 until day 18. Placental perfusion was assessed using a micromarker contrast agent. The animals were euthanized on day 18 of pregnancy; biometric data were acquired, and trophoblast invasion was analyzed. Doxycycline resulted in intrauterine growth retardation and lighter placentas in both groups. Maternal body weight was not affected. As shown earlier, preeclamptic rats exhibited a deeper endovascular trophoblast invasion. However, doxycycline treatment reduced trophoblast invasion in the preeclamptic rats. The physiological spiral artery remodeling, as assessed by the deposition of fibrinoid and α-actin in the spiral artery contour, was significantly reduced by doxycycline. The vascularity index, as assessed by perfusion measurement of the placenta, was reduced after doxycycline treatment in preeclamptic rats. Thus, matrix metalloproteinase inhibition with doxycycline leads to reduced trophoblast invasion and associated reduced placental perfusion. These studies are the first to show that reducing trophoblast-induced vascular remodeling decreases subsequent placental perfusion. Our model allows the study of dysregulated trophoblast invasion and vascular remodeling in vivo to gain important insights into preeclampsia-related mechanisms

    Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy.

    Get PDF
    The renin-angiotensin (Ang) system is important during placental development. Dysregulation of the renin-Ang system is important in preeclampsia (PE). Female rats transgenic for the human angiotensinogen gene crossed with males transgenic for the human renin gene develop the PE syndrome, whereas those of the opposite cross do not. We used this model to study the role of Ang II in trophoblast invasion, which is shallow in human PE but deeper in this model. We investigated the following groups: PE rats, opposite-cross rats, Ang II–infused rats (1000 ng/kg per day), and control rats. Ang II infusion increased only circulating Ang II levels (267.82 pg/mL), opposite cross influenced only uteroplacental Ang II (13.52 fmol/mg of protein), and PE increased both circulating (251.09 pg/mL) and uteroplacental (19.24 fmol/mg of protein) Ang II. Blood pressure and albuminuria occurred in the models with high circulating Ang II but not in the other models. Trophoblast invasion increased in PE and opposite-cross rats but not in Ang II–infused rats. Correspondingly, uterine artery resistance index increased in Ang II–infused rats but decreased in PE rats. We then studied human trophoblasts and villous explants from first-trimester pregnancies with time-lapse microscopy. Local Ang II dose-dependently increased migration by 75%, invasion by 58%, and motility by 282%. The data suggest that local tissue Ang II stimulates trophoblast invasion in vivo in the rat and in vitro in human cells, a hitherto fore unrecognized function. Conceivably, upregulation of tissue Ang II in the maternal part of the placenta represents an important growth factor for trophoblast invasion and migration

    Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats

    Get PDF
    We showed recently that mononuclear phagocyte system (MPS) cells provide a buffering mechanism for salt-sensitive hypertension by driving interstitial lymphangiogenesis, modulating interstitial Na(+) clearance, and increasing endothelial NO synthase protein expression in response to very high dietary salt via a tonicity-responsive enhancer binding protein/vascular endothelial growth factor C regulatory mechanism. We now tested whether isotonic saline and deoxycorticosterone acetate (DOCA)-salt treatment leads to a similar regulatory response in Sprague-Dawley rats. Male rats were fed a low-salt diet and received tap water (low-salt diet LSD), 1.0% saline (high-salt diet HSD), or DOCA+1.0% saline (DOCA-HSD). To test the regulatory role of interstitial MPS cells, we further depleted MPS cells with clodronate liposomes. HSD and DOCA-HSD led to Na(+) accumulation in the skin, MPS-driven tonicity-responsive enhancer binding protein/vascular endothelial growth factor C-mediated hyperplasia of interstitial lymph capillaries, and increased endothelial NO synthase protein expression in skin interstitium. Clodronate liposome MPS cell depletion blocked MPS infiltration in the skin interstitium, resulting in unchanged tonicity-responsive enhance binding protein/vascular endothelial growth factor C levels and absent hyperplasia of the lymph capillary network. Moreover, no increased skin endothelial NO synthase protein expression occurred in either clodronate liposome-treated HSD or DOCA-salt rats. Thus, absence of the MPS-cell regulatory response converted a salt-resistant blood-pressure state to a salt-sensitive state in HSD rats. Furthermore, salt-sensitive hypertension in DOCA-salt rats was aggravated. We conclude that MPS cells act as onsite controllers of interstitial volume and blood pressure homeostasis, providing a local regulatory salt-sensitive tonicity-responsive enhancer binding protein/vascular endothelial growth factor C-mediated mechanism in the skin to maintain normal blood pressure in states of interstitial Na(+) and Cl(-) accumulation. Failure of this physiological extrarenal regulatory mechanism leads to a salt-sensitive blood pressure response

    Закономерности изменения физико-механических свойств сплава Zr-1%Nb при комплексном ионно-плазменном модифицировании поверхности и наводороживании

    Get PDF
    В работе были изучены особенности изменения морфологии, структуры и физико-механических свойств циркониевого сплава Zr-1%Nb, подвергнутого комплексному ионно-плазменному модифицированию поверхности методами плазменно-иммерсионной ионной имплантации титана и осаждения покрытий нитрида титана. Показана высокая эффективность защиты сформированных структур от проникновения водорода в циркониевый сплав. Изучены механизмы сорбции и захвата водорода в титансодержащем модифицированном слое.In the present work, the features of the change in the morphology, structure, and physico-mechanical properties of zirconium alloy Zr-1%Nb subjected to complex ion-plasma surface modification by the methods of plasma-immersion titanium ion implantation and deposition of titanium nitride coatings were studied. The high protective properties of the formed structures against hydrogen permeation into the zirconium alloy is shown. Mechanisms of sorption and capture of hydrogen in a titanium-doped modified layer are studied

    A critical perspective on second-order empathy in understanding psychopathology: phenomenology and ethics

    Get PDF
    The centenary of Karl Jaspers’ General Psychopathology was recognised in 2013 with the publication of a volume of essays dedicated to his work (edited by Stanghellini and Fuchs). Leading phenomenological-psychopathologists and philosophers of psychiatry examined Jaspers notion of empathic understanding and his declaration that certain schizophrenic phenomena are ‘un-understandable’. The consensus reached by the authors was that Jaspers operated with a narrow conception of phenomenology and empathy and that schizophrenic phenomena can be understood through what they variously called second-order and radical empathy. This article offers a critical examination of the second-order empathic stance along phenomenological and ethical lines. It asks: (1) Is second-order empathy (phenomenologically) possible? (2) Is the second-order empathic stance an ethically acceptable attitude towards persons diagnosed with schizophrenia? I argue that second-order empathy is an incoherent method that cannot be realised. Further, the attitude promoted by this method is ethically problematic insofar as the emphasis placed on radical otherness disinvests persons diagnosed with schizophrenia from a fair chance to participate in the public construction of their identity and, hence, to redress traditional symbolic injustices

    Where is the gap?

    Get PDF

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Crystal search - feasibility study of a real-time deep learning process for crystallization well images

    Get PDF
    To avoid the time-consuming and often monotonous task of manual inspection of crystallization plates, a Python-based program to automatically detect crystals in crystallization wells employing deep learning techniques was developed. The program uses manually scored crystallization trials deposited in a database of an in-house crystallization robot as a training set. Since the success rate of such a system is able to catch up with manual inspection by trained persons, it will become an important tool for crystallographers working on biological samples. Four network architectures were compared and the SqueezeNet architecture performed best. In detecting crystals AlexNet accomplished a better result, but with a lower threshold the mean value for crystal detection was improved for SqueezeNet. Two assumptions were made about the imaging rate. With these two extremes it was found that an image processing rate of at least two times, but up to 58 times in the worst case, would be needed to reach the maximum imaging rate according to the deep learning network architecture employed for real-time classification. To avoid high workloads for the control computer of the CrystalMation system, the computing is distributed over several workstations, participating voluntarily, by the grid programming system from the Berkeley Open Infrastructure for Network Computing (BOINC). The outcome of the program is redistributed into the database as automatic real-time scores (ARTscore). These are immediately visible as colored frames around each crystallization well image of the inspection program. In addition, regions of droplets with the highest scoring probability found by the system are also available as images

    Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    Get PDF
    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents

    A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B

    Get PDF
    Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing
    corecore