188 research outputs found
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
Status of the MAJORANA DEMONSTRATOR experiment
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is
currently under construction at the Sanford Underground Research Facility in
South Dakota, USA. An overview and status of the experiment are given.Comment: 8 pages, proceeding from VII International Conference on
Interconnections between Particle Physics and Cosmology (PPC 2013), submitted
to AIP proceeding
The Majorana Project
Building a \BBz experiment with the ability to probe neutrino mass in the
inverted hierarchy region requires the combination of a large detector mass
sensitive to \BBz, on the order of 1-tonne, and unprecedented background
levels, on the order of or less than 1 count per year in the \BBz signal
region. The MAJORANA Collaboration proposes a design based on using high-purity
enriched Ge-76 crystals deployed in ultra-low background electroformed Cu
cryostats and using modern analysis techniques that should be capable of
reaching the required sensitivity while also being scalable to a 1-tonne size.
To demonstrate feasibility, the collaboration plans to construct a prototype
system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76
detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to
deploy and evaluate two different Ge detector technologies, one based on a
p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on
Neutrino Physic
- …
