835 research outputs found
Radiocarbon Chronologies and Extinction Dynamics of the Late Quaternary Mammalian Megafauna of the Taimyr Peninsula, Russian Federation
This paper presents 75 new radiocarbon dates based on late Quaternary mammal remains recovered from eastern Taimyr Peninsula and adjacent parts of the northern Siberian lowlands, Russian Federation, including specimens of woolly mammoth (Mammuthus primigenius), steppe bison (Bison priscus), muskox (Ovibos moschatus), moose (Alces alces), reindeer (Rangifer tarandus), horse (Equus caballus) and wolf (Canis lupus). New evidence permits reanalysis of megafaunal extinction dynamics in the Asian high Arctic periphery. Increasingly, radiometric records of individual species show evidence of a gap at or near the Pleistocene/Holocene boundary (PHB). In the past, the PHB gap was regarded as significant only when actually terminal, i.e., when it marked the apparent ‘‘last’’ occurrence of a species (e.g., current ‘‘last’’ occurrence date for woolly mammoth in mainland Eurasia is 9600 yr BP). However, for high Arctic populations of horses and muskoxen the gap marks an interruption rather than extinction, because their radiocarbon records resume, nearly simultaneously, much later in the Holocene. Taphonomic effects, ΔC14 flux, and biased sampling are unlikely explanations for these hiatuses. A possible explanation is that the gap is the signature of an event, of unknown nature, that prompted the nearly simultaneous crash of many megafaunal populations in the high Arctic and possibly elsewhere in Eurasia.
Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products
We developed a low-cost, high-throughput microbiome profiling method that
uses combinatorial sequence tags attached to PCR primers that amplify the rRNA
V6 region. Amplified PCR products are sequenced using an Illumina paired-end
protocol to generate millions of overlapping reads. Combinatorial sequence
tagging can be used to examine hundreds of samples with far fewer primers than
is required when sequence tags are incorporated at only a single end. The
number of reads generated permitted saturating or near-saturating analysis of
samples of the vaginal microbiome. The large number of reads al- lowed an
in-depth analysis of errors, and we found that PCR-induced errors composed the
vast majority of non-organism derived species variants, an ob- servation that
has significant implications for sequence clustering of similar high-throughput
data. We show that the short reads are sufficient to assign organisms to the
genus or species level in most cases. We suggest that this method will be
useful for the deep sequencing of any short nucleotide region that is
taxonomically informative; these include the V3, V5 regions of the bac- terial
16S rRNA genes and the eukaryotic V9 region that is gaining popularity for
sampling protist diversity.Comment: 28 pages, 13 figure
Racism, crisis, Brexit
This article offers a conjunctural analysis of the financial and political crisis within which Brexit occurred with a specific attentiveness to race and racism. Brexit and its aftermath have been overdetermined by racism, including racist violence. We suggest that the Leave campaign secured its victory by bringing together two contradictory but interlocking visions. The first comprises an imperial longing to restore Britain’s place in the world as primus inter pares that occludes any coming to terms with the corrosive legacies of colonial conquest and racist subjugation. The second takes the form of an insular, Powellite narrative of island retreat from a ‘globalising’ world, one that is no longer recognisably ‘British’. Further, the article argues that an invisible driver of the Brexit vote and its racist aftermath has been a politicization of Englishness. We conclude by outlining some resources of hope that could potentially help to negotiate the current emergency
Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10¹⁶ (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm²) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment
Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion
The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_α radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of ∼2–4 MeV electrons
Late Quaternary loss of genetic diversity in muskox (Ovibos)
BACKGROUND: The modern wildherd of the tundra muskox (Ovibos moschatus) is native only to the New World (northern North America and Greenland), and its genetic diversity is notably low. However, like several other megafaunal mammals, muskoxen enjoyed a holarctic distribution during the late Pleistocene. To investigate whether collapse in range and loss of diversity might be correlated, we collected mitochondrial sequence data (hypervariable region and cytochrome b) from muskox fossil material recovered from localities in northeastern Asia and the Arctic Archipelago of northern North America, dating from late Pleistocene to late Holocene, and compared our results to existing databases for modern muskoxen. RESULTS: Two classes of haplotypes were detected in the fossil material. "Surviving haplotypes" (SHs), closely similar or identical to haplotypes found in modern muskoxen and ranging in age from ~22,000 to ~160 yrbp, were found in all New World samples as well as some samples from northeastern Asia. "Extinct haplotypes" (EHs), dating between ~44,000 and ~18,000 yrbp, were found only in material from the Taimyr Peninsula and New Siberian Islands in northeastern Asia. EHs were not found in the Holocene muskoxen specimens available for this study, nor have they been found in other studies of extant muskox populations. CONCLUSION: We provisionally interpret this evidence as showing that genetic variability was reduced in muskoxen after the Last Glacial Maximum but before the mid-Holocene, or roughly within the interval 18,000-4,000 yrbp. Narrowing this gap further will require the recovery of more fossils and additional genetic information from this interval
First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10[superscript 15] neutrons, with 20% calculated alpha heating at convergence ~27×
Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g/cm[superscript 2]. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition
- …
