4,921 research outputs found
U-duality in three and four dimensions
Using generalised geometry we study the action of U-duality acting in three
and four dimensions on the bosonic fields of eleven dimensional supergravity.
We compare the U-duality symmetry with the T-duality symmetry of double field
theory and see how the and SL(5) U-duality groups reduce
to the SO(2,2) and SO(3,3) T-duality symmetry groups of the type IIA theory. As
examples we dualise M2-branes, both black and extreme. We find that uncharged
black M2-branes become charged under U-duality, generalising the Harrison
transformation, while extreme M2-branes will become new extreme M2-branes. The
resulting tension and charges are quantised appropriately if we use the
discrete U-duality group .Comment: v1: 35 pages; v2: minor corrections in section 4.1.2, many references
added; v3: further discussion added on the conformal factor of the
generalised metric in section 2 and on the Wick-rotation used to construct
examples in section
On the Exponentials of Some Structured Matrices
In this note explicit algorithms for calculating the exponentials of
important structured 4 x 4 matrices are provided. These lead to closed form
formulae for these exponentials. The techniques rely on one particular Clifford
Algebra isomorphism and basic Lie theory. When used in conjunction with
structure preserving similarities, such as Givens rotations, these techniques
extend to dimensions bigger than four.Comment: 19 page
Asymmetric supernova remnants generated by Galactic, massive runaway stars
After the death of a runaway massive star, its supernova shock wave interacts
with the bow shocks produced by its defunct progenitor, and may lose energy,
momentum, and its spherical symmetry before expanding into the local
interstellar medium (ISM). We investigate whether the initial mass and space
velocity of these progenitors can be associated with asymmetric supernova
remnants. We run hydrodynamical models of supernovae exploding in the
pre-shaped medium of moving Galactic core-collapse progenitors. We find that
bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants.
The shock wave first collides with these bow shocks 160-750 yr after the
supernova, and the collision lasts until 830-4900 yr. The shock wave is then
located 1.35-5 pc from the center of the explosion, and it expands freely into
the ISM, whereas in the opposite direction it is channelled into the region of
undisturbed wind material. This applies to an initially 20 Mo progenitor moving
with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants
generate mixing of ISM gas, stellar wind and supernova ejecta that is
particularly important upstream from the center of the explosion. Their
lightcurves are dominated by emission from optically-thin cooling and by X-ray
emission of the shocked ISM gas. We find that these remnants are likely to be
observed in the [OIII] lambda 5007 spectral line emission or in the soft
energy-band of X-rays. Finally, we discuss our results in the context of
observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure
What measurable zero point fluctuations can(not) tell us about dark energy
We show that laboratory experiments cannot measure the absolute value of dark
energy. All known experiments rely on electromagnetic interactions. They are
thus insensitive to particles and fields that interact only weakly with
ordinary matter. In addition, Josephson junction experiments only measure
differences in vacuum energy similar to Casimir force measurements. Gravity,
however, couples to the absolute value. Finally we note that Casimir force
measurements have tested zero point fluctuations up to energies of ~10 eV, well
above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the
fluctuation spectrum is ruled out experimentally.Comment: 4 page
Deterministic Brownian motion generated from differential delay equations
This paper addresses the question of how Brownian-like motion can arise from
the solution of a deterministic differential delay equation. To study this we
analytically study the bifurcation properties of an apparently simple
differential delay equation and then numerically investigate the probabilistic
properties of chaotic solutions of the same equation. Our results show that
solutions of the deterministic equation with randomly selected initial
conditions display a Gaussian-like density for long time, but the densities are
supported on an interval of finite measure. Using these chaotic solutions as
velocities, we are able to produce Brownian-like motions, which show
statistical properties akin to those of a classical Brownian motion over both
short and long time scales. Several conjectures are formulated for the
probabilistic properties of the solution of the differential delay equation.
Numerical studies suggest that these conjectures could be "universal" for
similar types of "chaotic" dynamics, but we have been unable to prove this.Comment: 15 pages, 13 figure
Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane
At least 5 per cent of the massive stars are moving supersonically through
the interstellar medium (ISM) and are expected to produce a stellar wind bow
shock. We explore how the mass loss and space velocity of massive runaway stars
affect the morphology of their bow shocks. We run two-dimensional axisymmetric
hydrodynamical simulations following the evolution of the circumstellar medium
of these stars in the Galactic plane from the main sequence to the red
supergiant phase. We find that thermal conduction is an important process
governing the shape, size and structure of the bow shocks around hot stars, and
that they have an optical luminosity mainly produced by forbidden lines, e.g.
[OIII]. The Ha emission of the bow shocks around hot stars originates from near
their contact discontinuity. The H emission of bow shocks around cool
stars originates from their forward shock, and is too faint to be observed for
the bow shocks that we simulate. The emission of optically-thin radiation
mainly comes from the shocked ISM material. All bow shock models are brighter
in the infrared, i.e. the infrared is the most appropriate waveband to search
for bow shocks. Our study suggests that the infrared emission comes from near
the contact discontinuity for bow shocks of hot stars and from the inner region
of shocked wind for bow shocks around cool stars. We predict that, in the
Galactic plane, the brightest, i.e. the most easily detectable bow shocks are
produced by high-mass stars moving with small space velocities.Comment: 22 pages, 24 figure
IRC-10414: a bow-shock-producing red supergiant star
Most runaway OB stars, like the majority of massive stars residing in their
parent clusters, go through the red supergiant (RSG) phase during their
lifetimes. Nonetheless, although many dozens of massive runaways were found to
be associated with bow shocks, only two RSG bow-shock-producing stars,
Betelgeuse and \mu Cep, are known to date. In this paper, we report the
discovery of an arc-like nebula around the late M-type star IRC-10414 using the
SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC-10414 with the
Southern African Large Telescope (SALT) showed that it is a M7 supergiant,
which supports previous claims on the RSG nature of this star based on
observations of its maser emission. This was reinforced by our new radio- and
(sub)millimeter-wavelength molecular line observations made with the Atacama
Pathfinder Experiment (APEX) 12 meter telescope and the Effelsberg 100 m radio
telescope, respectively. The SALT spectrum of the nebula indicates that its
emission is the result of shock excitation. This finding along with the
arc-like shape of the nebula and an estimate of the space velocity of IRC-10414
(\approx 70\pm20 km/s) imply the bow shock interpretation for the nebula. Thus,
IRC-10414 represents the third case of a bow-shock-producing RSG and the first
one with a bow shock visible at optical wavelengths. We discuss the smooth
appearance of the bow shocks around IRC-10414 and Betelgeuse and propose that
one of the necessary conditions for stability of bow shocks generated by RSGs
is the ionization of the stellar wind. Possible ionisation sources of the wind
of IRC-10414 are proposed and discussed.Comment: 15 pages, 8 figures, accepted for publication in MNRA
Structured Random Matrices
Random matrix theory is a well-developed area of probability theory that has
numerous connections with other areas of mathematics and its applications. Much
of the literature in this area is concerned with matrices that possess many
exact or approximate symmetries, such as matrices with i.i.d. entries, for
which precise analytic results and limit theorems are available. Much less well
understood are matrices that are endowed with an arbitrary structure, such as
sparse Wigner matrices or matrices whose entries possess a given variance
pattern. The challenge in investigating such structured random matrices is to
understand how the given structure of the matrix is reflected in its spectral
properties. This chapter reviews a number of recent results, methods, and open
problems in this direction, with a particular emphasis on sharp spectral norm
inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and
Applications" (Springer
- …
