1,254 research outputs found

    Kinetic theory of electromagnetic ion waves in relativistic plasmas

    Get PDF
    A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by ponderomotive force like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.Comment: 7 pages, 4 figures, to appear in Physics of Plasma

    Magnetospheric response to the solar wind as indicated by the cross-polar potential drop and the low-latitude asymmetric disturbance field

    No full text
    International audienceThe cross-polar potential drop ?pc and the low-latitude asymmetric geomagnetic disturbance field, as indicated by the mid-latitude ASY-H magnetic index, are used to study the average magnetospheric response to the solar wind forcing for southward interplanetary magnetic field conditions. The state of the solar wind is monitored by the ACE spacecraft and the ionospheric convection is measured by the double probe electric field instrument on the Astrid-2 satellite. The solar wind-magnetosphere coupling is examined for 77 cases in February and from mid-May to mid-June 1999 by using the interplanetary magnetic field Bz component and the reconnection electric field. Our results show that the maximum correlation between ?pc and the reconnection electric field is obtained approximately 25 min after the solar wind has reached a distance of 11 RE from the Earth, which is the assumed average position of the magnetopause. The corresponding correlation for ASY-H shows two separate responses to the reconnection electric field, delayed by about 35 and 65 min, respectively. We suggest that the combination of the occurrence of a large magnetic storm on 18 February 1999 and the enhanced level of geomagnetic activity which peaks at Kp = 7- may explain the fast direct response of ASY-H to the solar wind at 35 min, as well as the lack of any clear secondary responses of ?pc to the driving solar wind at time delays longer than 25 min

    Cosmic magnetic fields from velocity perturbations in the early Universe

    Full text link
    We show, using a covariant and gauge-invariant charged multifluid perturbation scheme, that velocity perturbations of the matter-dominated dust Friedmann-Lemaitre-Robertson-Walker (FLRW) model can lead to the generation of cosmic magnetic fields. Moreover, using cosmic microwave background (CMB) constraints, it is argued that these fields can reach strengths of between 10^{-28} and 10^{-29} G at the time the dynamo mechanism sets in, making them plausible seed field candidates.Comment: 11 pages, 1 figure, IOP style, minor changes and typos correcte

    Detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides

    Get PDF
    We present a novel method for detecting nonlinearities, due to quantum electrodynamics through photon-photon scattering, in Maxwell's equation. The photon-photon scattering gives rise to self-interaction terms, which are similar to the nonlinearities due to the polarisation in nonlinear optics. These self-interaction terms vanish in the limit of parallel propagating waves, but if instead of parallel propagating waves the modes generated in wavesguides are used, there will be a non-zero total effect. Based on this idea, we calculate the nonlinear excitation of new modes and estimate the strength of this effect. Furthermore, we suggest a principal experimental setup.Comment: 4 pages, REVTeX3. To appear in Phys. Rev. Let

    Signatures of Radiation Reaction in Ultra-Intense Laser Fields

    Get PDF
    We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parameter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.Comment: 8 pages, 6 figure

    Scalar quantum kinetic theory for spin-1/2 particles: mean field theory

    Full text link
    Starting from the Pauli Hamiltonian operator, we derive a scalar quantum kinetic equations for spin-1/2 systems. Here the regular Wigner two-state matrix is replaced by a scalar distribution function in extended phase space. Apart from being a formulation of principal interest, such scalar quantum kinetic equation makes the comparison to classical kinetic theory straightforward, and lends itself naturally to currently available numerical Vlasov and Boltzmann schemes. Moreover, while the quasi-distribution is a Wigner function in regular phase space, it is given by a Q-function in spin space. As such, nonlinear and dynamical quantum plasma problems are readily handled. Moreover, the issue of gauge invariance is treated. Applications (e.g. ultra-dense laser compressed targets and their diagnostics), possible extensions, and future improvements of the presented quantum statistical model are discussed.Comment: 21 pages, 2 figure

    Scaling laws for positron production in laser-electron-beam collisions

    Get PDF
    Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense laser pulse. We present scaling laws for the electron-beam energy loss, the γ-ray spectrum, and the positron yield and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate that by employing the collision of a >GeV electron beam with a laser pulse of intensity >5×1021Wcm-2, today's high-intensity laser facilities are capable of producing O(104) positrons per shot via light-by-light scattering

    The intensity dependent mass shift: existence, universality and detection

    Get PDF
    The electron mass shift in a laser field has long remained an elusive concept. We show that the mass shift can exist in pulses but that it is neither unique nor universal: it can be reduced by pulse shaping. We show also that the detection of mass shift effects in laser-particle scattering experiments is feasible with current technology, even allowing for the transverse structure of realistic beams.Comment: 5 pages, 4 figures. V2: references added, introduction expande
    corecore