1,254 research outputs found
Kinetic theory of electromagnetic ion waves in relativistic plasmas
A kinetic theory for electromagnetic ion waves in a cold relativistic plasma
is derived. The kinetic equation for the broadband electromagnetic ion waves is
coupled to the slow density response via an acoustic equation driven by
ponderomotive force like term linear in the electromagnetic field amplitude.
The modulational instability growth rate is derived for an arbitrary spectrum
of waves. The monochromatic and random phase cases are studied.Comment: 7 pages, 4 figures, to appear in Physics of Plasma
Magnetospheric response to the solar wind as indicated by the cross-polar potential drop and the low-latitude asymmetric disturbance field
International audienceThe cross-polar potential drop ?pc and the low-latitude asymmetric geomagnetic disturbance field, as indicated by the mid-latitude ASY-H magnetic index, are used to study the average magnetospheric response to the solar wind forcing for southward interplanetary magnetic field conditions. The state of the solar wind is monitored by the ACE spacecraft and the ionospheric convection is measured by the double probe electric field instrument on the Astrid-2 satellite. The solar wind-magnetosphere coupling is examined for 77 cases in February and from mid-May to mid-June 1999 by using the interplanetary magnetic field Bz component and the reconnection electric field. Our results show that the maximum correlation between ?pc and the reconnection electric field is obtained approximately 25 min after the solar wind has reached a distance of 11 RE from the Earth, which is the assumed average position of the magnetopause. The corresponding correlation for ASY-H shows two separate responses to the reconnection electric field, delayed by about 35 and 65 min, respectively. We suggest that the combination of the occurrence of a large magnetic storm on 18 February 1999 and the enhanced level of geomagnetic activity which peaks at Kp = 7- may explain the fast direct response of ASY-H to the solar wind at 35 min, as well as the lack of any clear secondary responses of ?pc to the driving solar wind at time delays longer than 25 min
Cosmic magnetic fields from velocity perturbations in the early Universe
We show, using a covariant and gauge-invariant charged multifluid
perturbation scheme, that velocity perturbations of the matter-dominated dust
Friedmann-Lemaitre-Robertson-Walker (FLRW) model can lead to the generation of
cosmic magnetic fields. Moreover, using cosmic microwave background (CMB)
constraints, it is argued that these fields can reach strengths of between
10^{-28} and 10^{-29} G at the time the dynamo mechanism sets in, making them
plausible seed field candidates.Comment: 11 pages, 1 figure, IOP style, minor changes and typos correcte
Detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides
We present a novel method for detecting nonlinearities, due to quantum
electrodynamics through photon-photon scattering, in Maxwell's equation. The
photon-photon scattering gives rise to self-interaction terms, which are
similar to the nonlinearities due to the polarisation in nonlinear optics.
These self-interaction terms vanish in the limit of parallel propagating waves,
but if instead of parallel propagating waves the modes generated in wavesguides
are used, there will be a non-zero total effect. Based on this idea, we
calculate the nonlinear excitation of new modes and estimate the strength of
this effect. Furthermore, we suggest a principal experimental setup.Comment: 4 pages, REVTeX3. To appear in Phys. Rev. Let
Signatures of Radiation Reaction in Ultra-Intense Laser Fields
We discuss radiation reaction effects on charges propagating in ultra-intense
laser fields. Our analysis is based on an analytic solution of the
Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of
a symmetry breaking parameter associated with the violation of null translation
invariance in the direction opposite to the laser beam. As the Landau-Lifshitz
equation is nonlinear the energy transfer within the pulse is rather sensitive
to initial conditions. This is elucidated by comparing colliding and fixed
target modes in electron laser collisions.Comment: 8 pages, 6 figure
Scalar quantum kinetic theory for spin-1/2 particles: mean field theory
Starting from the Pauli Hamiltonian operator, we derive a scalar quantum
kinetic equations for spin-1/2 systems. Here the regular Wigner two-state
matrix is replaced by a scalar distribution function in extended phase space.
Apart from being a formulation of principal interest, such scalar quantum
kinetic equation makes the comparison to classical kinetic theory
straightforward, and lends itself naturally to currently available numerical
Vlasov and Boltzmann schemes. Moreover, while the quasi-distribution is a
Wigner function in regular phase space, it is given by a Q-function in spin
space. As such, nonlinear and dynamical quantum plasma problems are readily
handled. Moreover, the issue of gauge invariance is treated. Applications (e.g.
ultra-dense laser compressed targets and their diagnostics), possible
extensions, and future improvements of the presented quantum statistical model
are discussed.Comment: 21 pages, 2 figure
Scaling laws for positron production in laser-electron-beam collisions
Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense laser pulse. We present scaling laws for the electron-beam energy loss, the γ-ray spectrum, and the positron yield and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate that by employing the collision of a >GeV electron beam with a laser pulse of intensity >5×1021Wcm-2, today's high-intensity laser facilities are capable of producing O(104) positrons per shot via light-by-light scattering
The intensity dependent mass shift: existence, universality and detection
The electron mass shift in a laser field has long remained an elusive
concept. We show that the mass shift can exist in pulses but that it is neither
unique nor universal: it can be reduced by pulse shaping. We show also that the
detection of mass shift effects in laser-particle scattering experiments is
feasible with current technology, even allowing for the transverse structure of
realistic beams.Comment: 5 pages, 4 figures. V2: references added, introduction expande
- …
